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Abstract

Background: Colony formation assay is the gold standard to determine cell reproductive death after treatment with
ionizing radiation, applied for different cell lines or in combination with other treatment modalities. Associated
linear-quadratic cell survival curves can be calculated with different methods. For easy code exchange and
methodological standardisation among collaborating laboratories a software package CFAssay for R (R Core Team, R:
A Language and Environment for Statistical Computing, 2014) was established to perform thorough statistical analysis
of linear-quadratic cell survival curves after treatment with ionizing radiation and of two-way designs of experiments
with chemical treatments only.

Methods: CFAssay offers maximum likelihood and related methods by default and the least squares or weighted
least squares method can be optionally chosen. A test for comparision of cell survival curves and an ANOVA test for
experimental two-way designs are provided.

Results: For the two presented examples estimated parameters do not differ much between maximum-likelihood
and least squares. However the dispersion parameter of the quasi-likelihood method is much more sensitive for
statistical variation in the data than the multiple R2 coefficient of determination from the least squares method.

Conclusion: The dispersion parameter for goodness of fit and different plot functions in CFAssay help to evaluate
experimental data quality. As open source software interlaboratory code sharing between users is facilitated.

Availability: The package is available at http://www.bioconductor.org/packages/release/bioc/html/CFAssay.html.
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Background
Clonogenic assay or colony formation assay (CFA) is an in
vitro cell survival assay based on the ability of single cells
to grow into colonies [1]. It is the gold standard to deter-
mine cell reproductive death after treatment with ionizing
radiation.Whereby the relationship between the radiation
doses and the proportion of surviving colonies is usually
described by parametric cell survival curves. These can
be used for the characterisation of the radiation sensitiv-
ity of different tumour cell lines given a specific radiation
type [2], or in combination with other treatment modal-
ities, e.g. a therapeutic agent or radiation sensitizer [3].

*Correspondence: braselm@helmholtz-muenchen.de
1Research Unit Radiation Cytogenetics, Helmholtz ZentrumMünchen, German
Research Center for Environmental Health GmbH, Neuherberg, Germany
2Clinical Cooperation Group ’Personalized Radiotherapy of Head and Neck
Cancer’, Helmholtz Zentrum München, German Research Center for
Environmental Health GmbH, Neuherberg, Germany

For the analysis of cell survival curves CFAssay uses the
commonly used linear-quadratic model (LQ model) [1].
Apart from radiation the CFA is also applicable to two-
way experimental designs, in which typically a control cell
line and a genetically modified cell line are treated with a
therapeutic drug [4]. In CFAssay ANOVA based tests are
used for two-way designs.
Usually, simple least square (LS) methods are applied

on the logarithmic survival fractions in order to calcu-
late parameter values for the LQ model and to perform
comparison tests between curves or between mean val-
ues of survival fractions. The statistical analysis with the
LS method requires that the data can be described accu-
rately with the normal distribution. However, because
colony numbers are discrete values following the Pois-
son distribution between different cell culture plates of a
particular experiment, maximum likelihood (ML) based
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methods are preferable from a statistical point of view.
The ML approach for cell survival curves was introduced
by [5] using a one-hit-multi-target model. Assuming that
the model (here LQ) is applicable, ML estimations of
the model parameters become asymptotically efficient, i.e.
are most precise (for practical and theoretical consider-
ations in general see for e.g. [6]). The efficiency can be
demonstrated in a simplified mean value example: For
two numbers k1 and k2 of surviving colonies in plates
with N1 or N2 cells seeded ML yields the pooled mean
m1 = (k1 + k2)/(N1 + N2) and LS yields the arith-
metic mean m2 = (k1/N1 + k2/N2)/2. When μ is the
expectation of m1 and m2, the Poisson variance of m1 is
μ/(N1+N2) and that ofm2 is (μ/N1+μ/N2)/4. The rela-
tive efficiency ofm2 tom1 is the ratio of the two variances,
4/(1/N1 + 1/N2)/(N1 + N2). For equal cell numbers the
relative efficiency is 1.0 and in addition m1 = m2. When
the cell numbers are different by a factor of 3, the relative
efficiency is 0.75.
In CFAssay the ML method is set as default but for the

sake of comparison the LS method can be optionally cho-
sen. The ML method provides two related quantities, the
so called deviance and a dispersion parameter, which are
useful to assess the quality of the data or the goodness
of fit. Both quantities are more sensitive against outliers
than the coefficient of determination R2 in LS regression.
The dispersion parameter is derived from the method of
iteratively reweighted least squares which solves the ML
equations when they can be formulated as a generalized
linear model [7]. This holds true for the LQ model in the
CFA as well as for the comparison of mean survival frac-
tions with help of ANOVA models. Generalized linear
models or LS regression are processed by the R-functions
glm or lm, respectively. The functions of CFAssay serve
as wrappers of these functions to simplify its use for the
analyst and to extract numerical results along with the ter-
minology used for the CFA. In addition to the LS or ML
method, an option for the weighting of the LS as described
in [1] is provided. For visual inspection of data quality
a further function is provided for plotting cell survival
curves for each replicated experiment, annotated with the
value of its contribution to the total weighted residual sum
of squares. The package can be installed directly in R using
the commands source(“http://bioconductor.
org/biocLite.R,”) and biocLite("CFAssay").
Once installed the reference manual can be accessed from
R using the command browseVignettes("CFAssay").

Methods
After any irradiation with a dose d the number of scored
colonies y is proportional toN, the number of cells seeded
and to the average proportion S = S(d) of cells that
grow into colonies. Thus, the Poisson probability for y is
given by

prob(y) = e−NS(NS)y/y! (1)

The linear-quadratic cell survival model
Dose dependent surviving fractions in CFAssay are fitted
by the LQ-model

S = S(d) = e−c−αd−βd2 (2)

where d is the radiation dose measured in Gy or another
unit, α is the dose effect per Gy and β per Gy2.
c = −log(S(0)), represents the logarithmic plating effi-
ciency, i.e. the surviving fraction of unirradiated cells,
which varies between different experiments. Usually,
when taken as a fixed value, the plating efficiency is put
by division on the left side of the equation1. We leave it
on the right side to have the possibility to fit it together
with the other two parameters. Statistically, colonies from
untreated cells are as well as colonies from treated cells
random observations.

ANOVAmodel for the two-way experiment
For the analysis of the two-way experiment we use mul-
tiplicative modelling, i.e. a logarithmic linear (log-linear)
model with two linear factors A and B and a factor D
for their potential interaction. Then the model can be
formulated as

S = ec+Ax1+Bx2+Dx1x2 (3)

or as nested parametrization

S = ec+Ax1+B0x2+(B1−B0)x1x2 (4)

where A, B are the effects of cell line modification and
of one or of two different treatments, D the interaction
effect and x1, x2 are 0 or 1, dependent on which factor
is applied. Thus, interaction for applied A and B means
that there is more (or less) effect than the sum. In the
second, nested parametrization B0 is the effect of treat-
ment in control cells (x1 = 0) and B1 the treatment effect
after genetic modification of the cell line (x1 = 1), for e.g.
siRNA knockdown of a gene of interest. The interactionD
is then the difference between B0 and B1. c represents the
logarithmic plating efficiencies in replicated experiments,
similar as in the LQ model (2).
Finally, with the ML method the model parameters

are determined such that the joint probability accord-
ing to (1) for the set of all colony counts yij at all doses
di (or treatments) and for all replicates j is maximized.
For the Poisson distribution this is equivalent to itera-
tively minimize the sum of weighted squared differences
between observed (Sij = yij/Nij) and modeled survival
fractions S, with inverse Poisson variances as weights.
For overall Poisson distribution, the dispersion parame-
ter, defined as the sum of weighted least squares divided
by its expected value ([6]), should be about 1.0. However,
for the CFA it often appears to be >1.0, mainly due
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to extra variability between replicated experiments, even
after correction for plating efficiencies. Therefore the cal-
culated standard deviations in CFAssay are scaled by the
square root of the dispersion parameter. This technique is
also called quasi-likelihood and uses the quasipoisson
family of the R-function glm. With the LS method sim-
ply the sum of squared differences between observed
(log(Sij) = log(yij/Nij)) and modeled logarithmic survival
fractions log(S) according to (2)–(4) is minimized. For
assessment of the goodness-of-fit of the LS method the
multiple R2 (coefficient of determination) is calculated,
which describes the fraction of variability in the total data
which can be explained by model dependency and plating
efficiencies.

Example data
We demonstrate the ML method for two examples. For
cell survival curves it is demonstrated on colony counts
of irradiation experiments with a pair of two human head
and neck squamous cell carcinoma (HNSCC) cell lines,
CAL33 [8] and OKF6/TERT1 [9] which were irradiated
with five different doses up to 6 Gy. The second exam-
ple was taken from [4]. There, the treatment effect of one
given dose of the chemotherapeutic drug cisplatin/5-FU
was tested for the human oesophageal adenocarcinoma
cell line OE19 before and after COX7A2 knockdown
by siRNA transfection. It was shown that knock-
down of the COX7A2 protein altered chemosensitivity,

which appeared statistically as an interaction effect.
Data of the two examples are supplied in the CFAssay
package.

Results
Cell survival curves
First, with the CFAssay function cellsurvLQfit we fit
the LQ model to colony counts of the OKF6/TERT1 cell
line. R commands for the assessment of results are shown
in Table 1. The ML method yields α = 0.52 ± 0.06/Gy,
β = 0.021 ± 0.010/Gy2 with a dispersion parameter 4.34
which is significantly greater than one (χ2-test, d.f. = 38,
p < 0.05). In spite of statistical significance, a critical
limit for the dispersion parameter depends on experience
and may vary between different labs. A value of 9.0 cor-
responding to 3 Poisson standard deviations might be a
recommendation in order to take a closer look for outlying
points or experiments for potential removal or replace-
ment. In comparison the LS methods yields α = 0.54 ±
0.07/Gy, β = 0.023 ± 0.011/Gy2 with a residual square
sum of 3.35 and a coefficient of determination R2 =
0.99. For the results the plating efficiencies were fitted
together with the data from irradiated samples. Fixed plat-
ing efficiencies, derived by option PEmethod = “fix”
in the function cellsurvLQfit result in almost iden-
tical coefficients but the dispersion parameter of the ML
method becomes 9.73. This is just an effect of shift on the
logarithmic scale, because the shape of the mean curve

Table 1 R commands for the two presented examples

R Command Comment

LQ cell survival curves

> library(CFAssay) Loads the package

> filename <- "expl1_cellsurvcurves.txt"

> datapath <- system.file("doc", filename,
package="CFAssay")

Gets the path to the example data

> datatab <- read.table(datapath, header=TRUE, sep="\t") Reads the data

> X <- subset(datatab, cline=="okf6TERT1") Selects OKF6 cell survival data

> print(cellsurvLQfit(X, method="ml")) Fits LQ model with maximum likelihood

> print(cellsurvLQfit(X, method="ls")) Fits LQ model with least squares

> print(cellsurvLQdiff(datatab, curvevar="cline")) Compares curves from two cell lines

Knockdown and treatment experiment

> filename <- "exp2_2waycfa.txt"

> datapath <- system.file("doc", filename,
package="CFAssay")

Gets the path to the example data

> datatab <- read.table(datapath, header=TRUE, sep="\t") Reads the data

> print(cfa2way(datatab, A="siRNA", B="x5fuCis",
param="A/B", method="ml"))

Fits LQ model with maximum likelihood

> print(cfa2way(datatab, A="siRNA", B="x5fuCis",
param="A/B", method="ls"))

Fits LQ model with least squares
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gets larger distance to the single replicated experiments
for treated samples when forced to pass the observation at
dose zero.
Diagnostic plots of the mean curve versus curves from

single replicates are shown for two experiments in Fig. 1a
and b. One of these experiments contributes more than
30% to the residual weighted sum of squares. The within
experiment fit is good (dispersion parameter 1.1) but the
slope is stronger than that of the mean curve. When

we include artificially introduced overdispersion into the
data, for e.g. by changing the number of colonies for one
measurement, so that the dispersion parameter becomes
larger than 8.0, then the R2 decreases only to 0.97. Thus,
the dispersion parameter for the ML method is more
sensitive against outlying points or outlying experiments
and thereby provides a better quantity for the diagnostic
assessment of the experimental results. With the func-
tion cellsurvLQdiff the OKF6/TERT1 cell line is

Fig. 1 Diagnostic plots of linear-quadratic cell survival curve (OKF6/TERT1) fitted by maximum-likelihood. Solid curve: mean of 8 replicate
experiments, dashed curves: 2 of 8 experiments. Annotated is the percentage of the residual sum of weighted squares to total 164.8 a: 5.5%,
b: 31.7%, expected: 12.5%
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compared with the CAL33 cell line using the ANOVA
F-test, which is the preferred test for generalized linear
models in the presence of overdispersion. For this test one
LQ curve is fitted to the total cell survival data (model 1)
and in contrast two LQ curves are fitted separately to the
cell lines (model 2). The p-value is the probability that
the difference between the residual data scatter of model
1 compared to that of model 2 occurs by chance. For
this example both methods indicate a significant overall
difference (p = 0.0015 with ML, p = 0.0006 with LS).

Knockdown and treatment experiment
By the experimental design four groups were defined:
control cells, treated control cells, knockdown cells and
treated knockdown cells. The experiment was replicated
4-times and the influence of the two factors knock-
down and treatment was analysed by model Eq. (4).
We set A the effect of COX7A2 knockdown on sur-
vival reduction, B0 the effect of treatment in control
cells and B1 the treatment effect after knockdown. The
results are illustrated in Fig. 2. The resulting values were
A = −0.348±0.053 (70.6%), B0 = −0.976±0.072 (37.7%)
and B1 = −1.343±0.095 (26.1%). Further, the F-test indi-
cated significant interaction (p = 0.012). The dispersion
parameter was 4.15 (d.f. = 9, p < 0.05) indicating some
extra variation compared to the Poisson variance. The
diagnostic plots of CFAssay (not shown) show somewhat
larger deviation from the expected mean values for one
of the 4 experiments. The least squares method based on

Fig. 2 Influence of siRNA transfection for COX7A2 on sensitivity for
cisplatin/5-FU. The height of the bars represent cell survival fractions
relative to the control sample. Annotated are values as calculated in
the two-way ANOVA according to Eq. (4), converted to percentages.
The value of B1 corresponds the height of the fourth bar relative to
the third bar. The difference between B1 and B0 is significant (ML
method, F-test, p = 0.012)

the logarithmic survival fractions yielded similar results
(A = −0.311±0.092, B0 = −0.975±0.092, B1 = −1.342±
0.092, F-test p = 0.019). However the coefficient of deter-
mination is R2 = 0.996 which indicates a good fit because
it is not sensitive against deviations based on the Poisson
variance.

Discussion
We established the software package CFAssay for statisti-
cal analysis of the colony formation assay and to be used
with the open source statistic software R [10]. The pack-
age consists of several functions for the calculation of
linear-quadratic (LQ) cell survival curve parameters, plot-
ting of survival curves and a statistical test for comparing
pairs of survival curves. In addition, it contains a func-
tion for ANOVA testing of two-way experimental designs
with the CFA. The functions use per default maximum
likelihood (ML) based methods, however optionally the
least square (LS) method or a weighted LS method with
weights calculated according to [1] can be used for sake of
comparison. Results of the ML method are known to be
most stable when the data vary according to the Poisson
distribution and the model can be assumed to be appro-
priate. Data of the CFA is usually analysed by the LQ
model [3]. Although, as in the presented examples, where
numbers of survived colonies are throughout two-digit
(>10) or more, ML and LS lead to comparable results,
this cannot be guaranteed in general. However, with the
ML method the dispersion parameter provides a sensitive
quantity to assess the quality of the data. Large disper-
sion values can be due to outlying single points of one
experiment or to variation between experimental repli-
cates. Deviations from the LQ model should not have a
substantial statistical influence for irradation doses below
8 Gy. In the manual we recommend roughly a critical dis-
persion value of 9.0 in analogy to the three-sigma rule.
However, it depends on experience and CFAssay provides
diagnostic plots for single experiments.
The LQ model for cell survival and log-linear ANOVA

for Poisson distributed counts of surviving colonies
belong statistically to a wider class of so called generalized
linear models [7]. Numerical procedures for its solution
with the algorithm of iteratively reweighted least squares,
which solve the ML equations, are now available with
almost every software for statistical analysis (GENMOD
in SAS [11], GENLIN in SPSS [12], glm in R).

Conclusions
The availability of numerical procedures for the ML
method and its features for thorough statistical analysis
are a reason why it should be taken into account. R is
now the most widely used statistical framework for the
professional statistician and also non-statisticians such
as biologists. Because it is free-available for everyone,
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interlaboratory code sharing between users is facilitated.
CFAssay significantly simplifies the use of the R functions
glm and lm for non-statisticians working with the CFA
and allows straightforward analysis and plotting of CFA
data. The package is open for extensions to other models
for cell survival and related statistical analysis.

Endnote
1The survival fraction SF is then defined as S(d)/S(0).
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