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Abstract

Background: Purpose of this study is to explore the trade-offs between radio-induced toxicities and second
malignant neoplasm (SMN) induction risk of different emerging radiotherapy techniques for Hodgkin’s lymphoma
(HL) through a comprehensive dosimetric analysis on a representative clinical model.

Methods: Three different planning target volume (PTV;) scenarios of a female patient with supradiaphragmatic HL
were used as models for the purpose of this study. Five treatment radiation techniques were simulated: an
anterior-posterior parallel-opposed (AP-PA), a forward intensity modulated (FIMRT), an inverse intensity modulated
(IMRT), a Tomotherapy (TOMO), a proton (PRO) technique. A radiation dose of 30 Gy or CGE was prescribed.
Dose-volume histograms of PTVs and organs-at-risk (OARs) were calculated and related to available dose-volume
constraints. SMN risk for breasts, thyroid, and lungs was estimated through the Organ Equivalent Dose model
considering cell repopulation and inhomogeneous organ doses.

Results: With similar level of PTV; coverage, IMRT, TOMO and PRO plans generally reduced the OARs' dose and
accordingly the related radio-induced toxicities. However, only TOMO and PRO plans were compliant with all
constraints in all scenarios. For the IMRT and TOMO plans an increased risk of development of breast, and lung
SMN compared with AP-PA and FIMRT techniques was estimated. Only PRO plans seemed to reduce the risk of
predicted SMN compared with AP-PA technique.

Conclusions: Our model-based study supports the use of advanced RT techniques to successfully spare OARs and
to reduce the risk of radio-induced toxicities in HL patients. However, the estimated increase of SMNs' risk inherent
to TOMO and IMRT techniques should be carefully considered in the evaluation of a risk-adapted therapeutic
strategy.
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Background

In the past decades, treatment improvements have made
Hodgkin’s lymphoma (HL) one of the most curable
malignancies. However, due to the low patients mean
age, the combined use of potentially harmful therapeutic
agents and the efficiency of the therapy that allows a high
cure rate with a long life span expectation, late effects of
HL treatment represent an important and considerable
threat for surviving patients. Indeed, the older series of
successfully treated long term surviving patients showed a
high rate of late side effects of therapy including iatrogenic
lung, heart and thyroid diseases [1-3].

Technological advances in HL radiation therapy (RT)
[4-11] by high conformal treatments potentially increase
control over organs-at-risk (OAR) dose distribution.
Dose-volume histogram (DVH) predictors in HL patients
have been reported for late side effects such as radiation
pneumonitis [12], hypothyroidism [13], and cardiovascular
diseases [14,15] supporting the planning optimization
procedures so as to limit OAR complication risks.

However, considering the low mean age, the high cure
rate, and the consequent long survival expectation of HL
patients, caution must be taken in the application of mod-
ern techniques such as intensity modulated radiotherapy
or Tomotherapy because of the greater volume of normal
tissue receiving low-to-moderate radiation doses and their
inherent risk of second malignant neoplasms (SMNs) that
may be significantly higher compared with 3D conformal
radiotherapy [16]. Moreover, the impact on SMN incidence
from particle therapy producing secondary neutrons causes
some concern [17]. Structures with a high potential for the
development of second malignancies, such as lung, thyroid
and breast, must be considered.

Predicting SMN risk from these newer and sophisticated
RT delivery techniques is complicated by their having been
only recently introduced and by the consequent absence of
epidemiological data [18]. As an alternative, biologically-
based mathematical models can be used to estimate the risk
of SMNs related to a given RT technique using organ
dose distribution through dose-volume histograms [19-23].
These models allow to compare dose distributions with
regard to the estimated risk of SMNs in the irradiated
organs as a function of point dose in the radiotherapy
dose range also including fractionation effects.

The aim of this study is to analyze normal tissue sparing
capability of different RT techniques for one representative
supradiaphragmatic HL. model case, in particular to explore
the trade-offs between radio-induced toxicities and SMNs
induction risk. For this purpose, we have conceived three
different size planning target volumes (PTVs), each with
different involvement of OARs such as heart, thyroid,
breasts and lungs. We have simulated RT plans using five
different delivery techniques. DVHs were then used to
predict the impact of the different analysed RT techniques
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on late side effects and on SMN induction risk estimated
through the Organ Equivalent Dose (OED) model consider-
ing cell repopulation and inhomogeneous organ doses [20].

Methods

Planning CT-scan of a female patient with supradiaphrag-
matic HL in standard supine position with 5-mm slices
acquisition was considered. Different involved field clinical
target volume (CTV)) size scenarios were generated: small
(CTV1), medium (CTV,), and large (CTV3). The CTV,
included the upper mediastinal and left supraclavear nodal
sites; the CTV, included CTV; plus bilateral lung hylus;
the CTV; included the whole mediastinum, the bilateral
lung hylus, and bilateral supraclavear nodal sites. The nodal
sites were delineated as described elsewhere [24]. Planning
target volumes (PTV;) included CTV; plus a 10 mm margin
(Figure 1). The following OARs were contoured: bilateral
lungs, whole heart, cardiac chambers, pericardium, thyroid
and breasts. For cardiac structures delineation, the heart
atlas [25] was applied while breasts were defined as
described by Weber et al. [26].

Radiotherapy techniques

Five treatment plans were generated on purpose for each
PTV;: a conventional anterior-posterior parallel-opposed
(AP-PA) plan, a forward intensity modulated plan
(FIMRT), an inverse intensity modulated plan (IMRT), a
Tomotherapy plan (TOMO), and a proton plan (PRO).
A total dose of 30 Gy or cobalt gray equivalent (CGE) in
20 daily fractions of 1.5 Gy was planned. All treatment
plans were optimized to ensure 95% of the prescription
dose delivered at least to 95% of the PTV with a maximum
dose less than 115%.

AP-PA

Conventional AP-PA plans were simulated using photon
beams from a linac equipped with 40 pairs of multileaf
collimator (MLC). Treatment planning was performed
by a 3-D planning system (XiO, Elekta-CMS) and a
convolution dose calculation algorithm was applied.

FIMRT

A step-by-step iterative process inherent to forward
planning was used manually adding two or more MLC
shaped subfields with the same AP-PA isocenter and
gantry position. Treatment plans were generated with
XIO planning system; the MLC positions and beam
weightings were optimized by forward planning based
on the 3D dose distribution as well as on DVHs.

IMRT

Seven field IMRT treatments were planned with
Pinnacle3 TPS (Philips) using Direct Machine Parameter
Optimization and Cone Convolution algorithm (CCA) for
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Figure 1 Three different planning target volume size scenarios: A) small (PTV;), B) medium (PTV,), C) large (PTVs). PTVi are outlined

dose calculation and a Siemens Artiste linac, with a
step-and-shoot technique performed with the 160
leaves collimator.

TOMO

Tomotherapy treatments were planned with Tomotherapy
Planning Station (Accuray) with gradient descent
optimization algorithm, establishing a 2.5 field width,
0,287 pitch value and a starting Modulation Factor

(MF) of 4 and an actual MF of 3.9, 3.6 and 2.7 for PTV;,
PTV,, and PTV; plans, respectively. The dose distributions
were calculated with CCA. Delivery was performed with
fifty-one fields for each gantry rotation and beam modula-
tion carried out with a 64 leaves binary collimator.

PRO
Proton plans were generated with the Syngo RT Planning
Station (Siemens VB-10), using an active scanning dose
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delivery system (Centro Nazionale di Adroterapia
Oncologica Foundation). Proton energies from 62 to
180 MeV/u were used with a nominal 10 mm Full Width
Half Maximum pencil beam focus and a beam intensity of
2*10° particles per spill. A scanning step of 3 mm was fixed
for the transversal directions and a 2 mm energy step was
selected for Spread Out Bragg Peak generation. For
PTV; and PTV,, an AP-PA configuration was defined,
while two couples of parallel-opposed beams, centered
on the PTV, were applied for PTV3;. A 4 cm range
shifter was introduced for the anterior beam directions
to achieve the minimum proton energy required. A
fixed RBE value of 1.1 was used.

IMRT, TOMO and PRO plans were optimized using
constraints on the OARs and priority weightings published
by Weber et al. [26].

All treatment characteristics including the delivered
monitor units and the number of used protons are
summarized in Table 1. The contribution from the
scattered neutrons was considered and the dose distribu-
tion corrected using the data from d’Errico et al. [27] for

Table 1 Treatment techniques characteristics

Technique- PTV;  Fields or  Energy  Total MUs or Neutron
Subfields (MeV) protons per Gy equivalent
number dose (Sv)

AP-PA- PTV, 2 6 5040 0
AP-PA- PTV, 2 6 5038 0
AP-PA- PTV; 2 6 4157 0
FIMRT- PTV, 1 6 1427 0

3 15 2070 0.020
FIMRT- PTV, 1 6 1415 0

3 15 2040 0.020
FIMRT-PTV; 3 6 1714 0

3 15 2277 0.020
IMRT- PTV, 7 6 8020 0
IMRT- PTV, 7 6 9500 0
IMRT- PTV; 7 6 14000 0
TOMO- PTV, 6 10042 0
TOMO- PTV, 6 9661 0
TOMO- PTV, 6 8232 0
PROTONS- PTV, 1 88-170 543%10'° 0.16

1 62-162 45210
PROTONS- PTV, 1 87-171 6.20%10'° 0.19

1 62-162 452%10'°
PROTONS- PTV; 1 88-180 3.52%10"° 023

1 88-173 392%10'°

1 62-162 342%10"0

1 62-166 334%10'°
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photons, and the data from Schneider et al. [28] for spot-
scanned protons, for neutron equivalent dose estimation.
The following neutron equivalent dose in Sv per applied
MUs and per treatment protons per Gy were used:
H]\[,GMV: 0’ HN,]SMV: 1X10>5, HN,protons: 6X10»14' The
out-of-axis neutron dose contribution was neglected
since the OARs we considered for plan evaluation were
included in the primary dose distribution. However,
for organs far from the target volume which were not
considered in the present study the out-of-field neutron
contribution can be important.

Plan evaluation

For each RT technique and for each PTV scenario specific
organ dose-volume metrics and dose parameters were
calculated from DVHs and related to available predictors
for radio-induced toxicities:

Whole Heart: V25 <10% [15]; endpoint: long-term
cardiac mortality;

Cardiac Chambers: Left Atrium V25<63%; Left Ventricle
V30<25%; Right Ventricle V30<65% [14]; endpoint:
asymptomatic heart valvular dysfunction;

Pericardium: V30<46%; mean dose <26 Gy [15];
endpoint: pericarditis;

Lungs: V20<33.5%; mean dose <13.5 Gy [12]; endpoint:
symptomatic radiation pneumonitis;

Thyroid: V30<62% [13]; endpoint: clinical or subclinical
hypothyroidism.

Where VX is the percentage of organ volume exceeding
X Gy.

Of note, the threshold metrics for cardiac chambers,
lungs, and thyroid were specifically extrapolated from
HL patients’ cohorts.

The DVHs were also utilized to estimate the SMN risk
for breasts, lungs and thyroid through the application of
the OED concept using specific organ model-parameters.
Accordingly, the risk ratio (RR) for a RT plan i relative to
another plan j with respect to cancer induction in one
organ is equivalent to the OED ratio [20]:

OED (plan;)

RR; = OED (planj)

The AP-PA plan was used as reference for RRj
calculation.

The OED can be determined on the basis of an organ
specific dose—response relationship for radiation induced
cancer (“risk equivalent dose”, RED) and DVH. The RED
for carcinoma induction is given by a mechanistic model
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accounting for cell killing and fractionation effects [19].
Briefly, for a given organ and a given plan:

OED = VLT Z V(D;)RED(D;) (2)

where Vr is the total organ volume and the sum is taken
over all DVH bins, and

—a'D

RED(D) = ¢

a’'R

(1 “ 2R+ R2eP — (1 — R)%e i )
(3)

where a’=a+fd, with a and S denoting the linear-
quadratic model parameters for the organ of interest
and d the dose fraction, D the total dose, and R the re-
population/repair parameter. The dose—response model
is robust with variations in a/f [20] and an a/f= 3 Gy
was used for all calculations. The risk for secondary
breast, thyroid and lung cancers were estimated with
parameter values a= 0.067; 0.0318; 0.042 Gy and R= 0.62;
0.0; 0.83 respectively [20]. Using RED (D) given by eq. (3),
the risk-volume histograms (RVHs) for breast, thyroid and
lung cancers were calculated.

Results

Target sizes were PTV;= 497.0 cm® PTV, = 626.7 cm®,
and PTV; = 8374 cm® All RT techniques succeeded in
obtaining the requested PTV; dose coverage independently
of PTV size. Comparative DVHs for the different PTV; and
for all techniques are shown in Additional file 1. PTV;
coverage was optimal with both TOMO and PRO plans.

Radiation dose to OARs
In Table 2 are reported the DVH parameters for the
different RT plans and for each PTV, With regard to
PTV; and PTV, scenarios, DVH analysis (Additional file
2a and 2b) shows that all the different techniques
respected the considered constraints with the exception
of the whole-heart V25 for which only the TOMO and
PRO plans were able to reduce it under 10%. Regarding
the PTV; the AP-PA, FIMRT, IMRT plans violate the
dose-volume limits for the whole-heart and for the left
atrium. In addition, the AP-PA plan exceeds the 62%
volume for thyroid V30 and the IMRT plan shows a mean
lung dose just equal to 13.5 Gy limit (Additional file 2c).

In general, the PRO and TOMO plans provided the
lowest parameter values for all the considered OARs
and spared them better than IMRT plan.

SMNs relative risk

The estimated OED values for breasts, lungs and thyroid
for all RT techniques are listed in Table 3. In Figure 2
comparative RVHs for the above OARs are shown. In
breasts and lungs, the PRO plan provided the lowest
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Table 2 Organ dose-volume metrics and dose parameters
for the different RT plans and for each PTV;

AP-PA  FIMRT IMRT TOMO PRO
PTV,
Heart V25 22.5%  21.0* 11.8% 45 36
Left Atrium V25 422 39.2 350 258 245
Left ventricle V30 0.1 0.1 0.1 0.1 0.1
Right Ventricle V30 76 24 0.1 0.1 0.1
Pericardium V30 6.2 25 39 30 2.1
mean dose  10.0 9.2 6.4 7.7 43
Thyroid V30 49.0 48 414 169 285
Lungs V20 12.1 11 15 10.1 8.2
mean dose 5.3 49 78 8.1 33
PTV,
Heart V25 27.7%  29.9% 12.3* 50 6.7
Left Atrium V25 418 450 415 272 304
Left ventricle V30 9.2 75 0 0.1 03
Right Ventricle V30 9.7 6.5 0 0 0
Pericardium V30 149 115 9.2 55 29
mean dose  11.8 12.5 107 78 7.5
Thyroid V30 493 421 278 16 18.6
Lungs V20 24.7 236 205 165 144
mean dose 9.6 9.2 105 97 64
PTV;
Heart V25 60.5%  675%  220* 87 73
Left Atrium V25 98.3*  99.3% 73.0% 494 43.0
Left ventricle V30 120 130 25 0.1 0
Right Ventricle V30 49.2 470 0 0 0
Pericardium V30 313 420 206 130 32
mean dose 220 238 172 146 102
Thyroid V30 93.9% 240 60 45.0 70

Lungs V20 30.7 288 270 230 14.5

mean dose 119 1.1 13.5% 126 6.5

* not compliant with constraint.
VX is the percentage of organ volume exceeding X Gy.

risk-volume curve whereas the highest curves were
provided by IMRT and TOMO plans.

RR values for FIMRT, IMRT, TOMO and PRO plans
relative to the AP-PA plan with respect to SMN induction
in breasts, lungs and thyroid are plotted in Figure 3.

Regarding breast cancer induction, in the PTV; case,
the IMRT and TOMO plans exhibit OED values of 2.44
and 2.13, respectively, which result in a RR for SMN
induction that is 2.2- and 2.0-fold the risk of a AP-PA
plan (Figure 3A). The IMRT and TOMO plans’ RR for
breast cancer induction exhibit a small reduction when
the PTV size increases; nonetheless we observe an
approximately 2-fold increase compared with AP-PA or
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Table 3 Estimated Organ Equivalent Dose (OED) for the
different RT plans and for each PTV;

PTV, PTV, PTV;
OED OED OED
Breasts
AP-PA 1.09 141 2.25
FIMRT 0.94 1.92 252
IMRT 244 3.00 391
TOMO 2.13 2.71 4.02
PRO 0,35 0,94 114
Lungs
AP-PA 2.82 448 558
FIMRT 2.64 438 534
IMRT 3.77 498 6.25
TOMO 4.60 535 6.76
PRO 1.67 2.98 3.30
Thyroid
AP-PA 6.35 6.31 6.98
FIMRT 6.26 6.17 7.25
IMRT 769 7.71 7.2
TOMO 749 6.30 7.20
PRO 7.35 6.50 7.34

FIMRT techniques. On the contrary, in all PTV scenarios,
PRO plan gives an OED in the range of 0.35-1.14 and
accordingly a RR induction compared with conven-
tional plan in the range of 0.3-0.7. When IMRT and
TOMO were compared to PRO plan, we observed an
increase in RR values for the breast by a factor ranging
from a minimum of 3 (TOMO in PTV,) to a maximum
of 7 (IMRT in PTV,).

For lung cancer induction (Figure 3B), we observed
the same behavior for the TOMO and IMRT techniques
increasing RR values by a factor 1.1-1.6 compared with
the conventional plan, while with PRO plans we
observed a RR reduction. Conversely, for thyroid
(Figure 3C) the RR values are close to 1 for all the
techniques and all target sizes except for IMRT in PTV;
and PTV, cases and for TOMO in the PTV; case in
which the RR is 1.2.

Discussion

Since the implementation in HL therapy of extended
field irradiation, the high cure rate was offset by late side
effects and development of SMNs in a relevant fraction
of patients [1]. The progresses in imaging and the better
knowledge of the disease biology, with consequent better
prognostic stratification of patients, have allowed a
decrease in the therapeutic load consisting in a progressive
reduction of chemotherapy cycles, radiation dose and
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treated volume in most patients [29]. However, the risk of
late iatrogenic effects remains remarkable. The radiation
delivery techniques can heavily condition the distribution
of the dose in tissues and alter the toxicity profile of a
treatment. Involved-field IMRT has shown excellent target
coverage and amelioration of side effects in a clinical study
by Lu et al. [7]. Volumetric modulated arc therapy has
been shown to significantly reduce hearth dose in HL
patients affected with cardiovascular disease [30] and to
perform better than IMRT in sparing the OARs when
using involved nodal RT [10,26]. With the same purpose
Tomotherapy has been recently proposed for the
treatment of HL [8]. Recent preliminary studies of
proton beam therapy for mediastinal HL have been
reported [4]. The OARs toxicities and development of
second breast neoplasms would be expected to be
reduced by the use of particle therapy. However,
while it is epidemiologically reasonable to expect that
a dose reduction is associated with a reduced risk of
late effects, an improvement in SMN risk due to dose
reduction is not yet clearly established.

Our study aims at analyzing 5 different radiation delivery
techniques in three different hypothetical scenarios
of supradiaphragmatic HL through a comprehensive
dosimetric study. The main endpoint was to investigate,
for each single technique, the balance between the
predicted OARSs injuries and the predicted development
of SMNSs, with the same target optimal dose coverage.
The advantage of IMRT for heart and left ventricle
sparing as well as its disadvantages in the low dose region,
in particular for breasts, have been already reported in the
literature [9]. However, in our study the above advantages
and disadvantages were quantified and extended to other
state-of-the-art techniques.

As surrogate indicators of OARs morbidities, some of
the constraints recently suggested by the literature
were used. We chose constraints predictive of feared
radioinduced injuries commonly described in patients
treated with sequential chemo-radiotherapy for HL
such as hypothyroidism [13], asymptomatic cardiac valvular
dysfunction [14] and radiation pneumonitis [12] and
specifically extrapolated from HL patients’ cohorts,
together with some other more general constraints
suggested by QUANTEC reviews [15].

Lacking epidemiological data relative to the recent RT
delivery techniques, estimation of the risk of SMN for
breasts, lungs, and thyroid based on mathematical
models [19,20] was used. Many uncertainties are
involved in modelling the underlying biology of radiation
induced-cancer. Nevertheless, these models may be reli-
ably used to predict the impact on SMN induction of a
given technique relative to another reference technique.
To this end, we introduced the concept of risk ratio RR
as a parameter for plan evaluation.
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Figure 2 Comparative risk-volume histograms for breasts, lungs and thyroid for each PTV,.

It should be noted that for the quality factor Q (stochastic
RBE) we take a value of 1.1 for protons. There is a strong
energy dependence for the quality factor and a factor of
two, as recommended by ICRP 92 [31], would perhaps only
be expected at very low energies in the tail of the Bragg
peak. The main contribution to the normal tissue integral
dose, however, will come from the plateau region of the
Bragg curve due to the protons passing through normal tis-
sue to reach the target volume. This portion of the Bragg
curve consists predominantly of dose deposited by higher
energy protons (much higher than 8 MeV) for which the
NCRP quotes a value of one [32,33]. In the normal tissue
distal to the target volume, although the quality factor may
be higher, the irradiated volume will be very much smaller
and the deposited dose will be lower due to the finite max-
imum range of protons in the tissue. Therefore, it is safe to
assume that the vast majority of normal tissues will be irra-
diated by protons with a quality factor close to one.

As regards PTV coverage, in the framework of a satisfac-
tory performance of all the above techniques, the optimal
coverage was obtained by TOMO and PRO plans.

As far as constraint compliance is concerned, in all PTV
scenarios, AP-PA, FIMRT, and IMRT plans exceed the
whole-heart-V25 of 10%. This limit, associated with a <1%
probability of cardiac mortality, is an overly safe risk esti-
mate based on model predictions and consequently the risk
may be overestimated [15]. The other constraints were met
by all five techniques in PTV; and PTV, scenarios. For
PTVs, the AP-PA, FIMRT and IMRT also failed to meet left
atrium V25 cutoff volume of 63% which is a significant pre-
dictor of mitral and aortic valvular defects. The latter are
particularly important for those patients characterized by
high cure rates and prolonged survival like HL patients be-
cause of their progressive nature and potential contribution
to overt cardiac toxicity [14]. Only the AP-PA failed to meet
thyroid V30 dose constraint predictive of hypothyroidism.
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H APPA
H FIMRT
= IMRT
uTOMO
= PRO

HAPPA
H FIMRT
= IMRT
ETOMO
uPRO

PTV3

HAPPA
B FIMRT
W IMRT
ETOMO
H PRO

PTV3

Remarkably, beyond DVH predictors, TOMO and PRO led
to a reduction in the doses to all the OARs compared with
the other plans.

Conversely, the estimated risk ratio of SMNs induction
for breasts and lungs was significantly increased by IMRT
and TOMO in all scenarios though it is lower when the tar-
get volume is larger. No relevant risk ratio increase in

thyroid cancer was found for any technique. To be noted,
theoretically PRO led to a reduction of risk ratio in all cases.
Among photon delivery techniques, conventional AP-PA
and FIMRT resulted in the lowest estimated risk of SMNs.
This study, exploring the trade-offs between radio-
induced toxicities and SMN by planning comparative eva-
luations, provides informative tools so as to evaluate which
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HL patient potentially deserves a more advanced radiation
technique obtaining a real advantage in terms of determin-
istic and/or stochastic damage prevention. Diverse variables
must be considered such as individual patients features,
site and size of disease in order to establish strategies
capable of performing a risk-adapted radiotherapy.

Let us point to some potential limitations of our
proof-of-concept study. First, we considered one single
model case not taking into account morphological
differences peculiar to each single patient such as
heart, lung and breast volumes. We also analyzed
three different PTVs that, although paradigmatic, did
not cover all possible varieties of HL. Moreover, in
SMN estimation the uncertainty linked to neutron RBE
for carcinogenesis should be taken into account .

Given the above considerations, our analysis suggests
that, as already shown for other tumor sites [17,34], pro-
ton therapy could theoretically be the optimal radiation
modality in all HL scenarios studied, provided that plan
robustness and organ motion are properly managed [35].
However, costs and availability currently limit proton usage.
Regarding photon techniques, the choice of the more
appropriate treatment should be tailored to the individual
case. For instance, for a young male patient with a large
tumor or a patient with cardiac co-morbidity both requir-
ing a total dose of 30 Gy, TOMO plan would result
extremely advantageous. On the contrary, TOMO could
not be equally advantageous for a good prognosis young
(25 years) HL bearing female patient requiring a total dose
of 20 Gy, which implies a very low risk of late organ injur-
ies. In such a case, radioinduced breast cancer may be of
more concern and FIMRT may result more appropriate.

Conclusions

Our model-based study fosters the use of advanced RT
techniques to reduce the dose to OARs and, consequently,
the risk of radio-induced toxicities in HL patients. However,
in the framework of a modern risk-adapted therapeutic
strategy, the estimated increase of SMNs’ risk inherent
to TOMO and IMRT techniques should be carefully
considered.
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