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Abstract 

Background: Adjuvant radiation therapy improves the overall survival and loco‑regional control in patients with 
breast cancer. However, radiation‑induced heart disease, which occurs after treatment from incidental radiation 
exposure to the cardiac organ, is an emerging challenge. This study aimed to generate synthetic contrast‑enhanced 
computed tomography (SCECT) from non‑contrast CT (NCT) using deep learning (DL) and investigate its role in con‑
touring cardiac substructures. We also aimed to determine its applicability for a retrospective study on the substruc‑
ture volume‑dose relationship for predicting radiation‑induced heart disease.

Methods: We prepared NCT‑CECT cardiac scan pairs of 59 patients. Of these, 35, 4, and 20 pairs were used for train‑
ing, validation, and testing, respectively. We adopted conditional generative adversarial network as a framework to 
generate SCECT. SCECT was validated in the following three stages: (1) The similarity between SCECT and CECT was 
evaluated; (2) Manual contouring was performed on SCECT and CECT with sufficient intervals and based on this, the 
geometric similarity of cardiac substructures was measured between them; (3) The treatment plan was quantitatively 
analyzed based on the contours of SCECT and CECT.

Results: While the mean values (± standard deviation) of the mean absolute error, peak signal‑to‑noise ratio, and 
structural similarity index measure between SCECT and CECT were 20.66 ± 5.29, 21.57 ± 1.85, and 0.77 ± 0.06, those 
were 23.95 ± 6.98, 20.67 ± 2.34, and 0.76 ± 0.07 between NCT and CECT, respectively. The Dice similarity coefficients 
and mean surface distance between the contours of SCECT and CECT were 0.81 ± 0.06 and 2.44 ± 0.72, respectively. 
The dosimetry analysis displayed error rates of 0.13 ± 0.27 Gy and 0.71 ± 1.34% for the mean heart dose and V5Gy, 
respectively.

Conclusion: Our findings displayed the feasibility of SCECT generation from NCT and its potential for cardiac sub‑
structure delineation in patients who underwent breast radiation therapy.
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Background
Adjuvant radiation therapy (RT) improves the over-
all survival and loco-regional control in patients with 
breast cancer [1]. However, radiation-induced heart dis-
ease (RIHD), which occurs years after treatment from 
incidental radiation exposure to the cardiac organ, is 
an emerging challenge of utmost importance [2]. Darby 
et  al. demonstrated that the risk of an acute coronary 
event increases linearly with the mean heart dose (MHD) 
without a safe threshold of exposure [3]. These dose–
response relationships were corroborated by subsequent 
studies on modern 3D data [4].

A recent study suggested that the dose-volume data 
of cardiac substructure units along with the heart might 
provide a more accurate prediction of RIHD than MHD 
[5, 6]. In breast cancer, van den Bogaard et al. identified 
the volume of the left ventricle receiving 5  Gy (LV-V5) 
as a more important prognostic dose-volume param-
eter than MHD for predicting an acute coronary event 
[6]. In this context, the ongoing MEDIRAD-BRACE 
study (NCT03211442) is recruiting 7000 participants to 
validate these findings. Moreover, the ongoing Radio-
therapy Comparative Effectiveness randomized clinical 
trial (NCT02603341) aims to compare the role of proton 
beam therapy with photon beam therapy in breast cancer 
and intends to study the dose-volume profiles of cardiac 
substructures. In contrast, the dose to the left anterior 
descending (LAD) coronary artery was also suggested 
as a more reliable surrogate for the risk of major cardiac 
events than MHD [7].

Considering that cardiac structures are appropriately 
visualized in an electrocardiography-gated contrast-
enhanced CT (CECT) or magnetic resonance imaging 
(MRI) scan, a bottleneck for more profound and active 
studies on cardiac structure-dose relationships comprises 
difficulties in contouring the heart substructure on plan-
ning CT scans for breast RT, which are generally obtained 
without the intravenous (IV) administration of a contrast 
agent. The use of CECT in the breast cancer staging is 
not indicated for patients with early breast cancer in the 
absence of signs/symptoms of metastatic disease accord-
ing to NCCN guidelines version 2.2022 [8]. The use of 
breast MRI also is optional and is not universally recom-
mended by experts in the field [8].

To overcome these limitations, some studies have tried 
to distinguish the heart substructure retrospectively in an 
environment consisting of non-contrast CT (NCT). Mor-
ris et  al. developed atlas- and deep learning (DL)-based 

auto-contouring (AC) pipelines leveraging MRI’s soft tis-
sue contrast, coupled with NCT for cardiac substructure 
delineation [9, 10]. However, it has a limitation in that 
additional images must be obtained, which eventually 
increases the workflow burden of breast RT. More recent 
studies developed DL models for the AC of the heart and 
its substructures directly on NCT [11–13]. However, it is 
mentioned that the manual contours itself, which should 
be the ground truth of the DL model, may be inaccurate 
due to the poor visibility of NCT [13]. Moreover, manual 
modification of prediction from the DL model should be 
performed on NCT with nothing visible in their studies.

To enable contouring and modification of cardiac sub-
structure without additional image acquisition, it would 
be advantageous to provide a basis for them rather than 
the contours themselves. In this study, we aimed to gen-
erate synthetic contrast-enhanced CT (SCECT) from 
NCT using a deep convolutional neural network (DCNN) 
for cardiac substructure delineation in breast cancer RT.

Methods and materials
Study design
We intended to leverage DL to generate SCECT from 
NCT and verify its manifold utility. SCECT was vali-
dated in four stages, as shown in Fig. 1. (1) The similar-
ity between SCECT generated from the DL model and 
CECT was evaluated in terms of image quality. (2) The 
cardiac substructures were manually contoured based 
on SCECT and CECT with sufficient intervals. Then, the 
geometric similarity between contours in each image was 
measured. (3) We quantitatively compared and analyzed 
the treatment plan based on the contours of SCECT 
and CECT. This study was approved by the institutional 
review board of our institution.

Data preparation
We prepared NCT-CECT cardiac scan pairs of 
59 patients comprising an average resolution 
of ~ 0.8 × 0.8 × 1.0  mm3. For all patients, NCT and CECT 
were scanned by using one of the following multidetec-
tor row scanners: Somatom Sensation 16, Somatom Sen-
sation 64, Definition Flash (Siemens Medical Solutions, 
Forchheim, Germany), Discovery CT 750 HD, Revolu-
tion (GE Medical Systems, Milwaukee, Wisconsin, USA), 
or iCT (Philips Medical Systems, the Netherlands). All 
cardiac CT scans were acquired in a volumetric mode in 
full inspiration. A bolus of 50–90  mL (1.5  mL/kg body 
weight) of iopamidol (300 mg I/mL, Radisense, Taejoon 
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Pharmaceutical, Seoul, South Korea) was injected intra-
venously at a flow rate of 3 mL/s for CECT images.

Deep learning‑based SCECT generation
The 59 NCT-CECT cardiac scan pairs underwent mul-
tiple pre-processing steps for use in the SCECT gen-
eration model. First, image resolution was resampled 
to 0.9 × 0.9 × 1.0   mm3. After matching the structure 
of paired NCT-CECT scans based on the deformable 
image registration algorithm [14, 15], we cropped the 
384 × 84 × 150 area near the heart. Subsequently, the 
contrast window was consistently set to [− 150, 500] 
Hounsfield units (HU) for a better analysis of important 
features to be by the DL model.

We used conditional generative adversarial network 
(cGAN) [16, 17] as our SCECT generation framework. 
cGAN learns a mapping from observed image x to y 
G : x → y . The generator G is trained to produce out-
puts that cannot be distinguished from “real” images by 
an adversarially trained discriminator, D , which is trained 
to detect the generator’s “fakes.” The objective of a cGAN 
can be expressed as

where G tries to minimize this objective against an adver-
sarial D that tries to maximize it. Unlike the original 
cGAN learned from noise z, in this study, it is learned 
in an environment similar to almost supervised learning 
with L1 loss function [17]. λ is arbitrary constant vari-
able, and it was set to 100 in this study. The architecture 
diagram and further details of our models are illustrated 
in Fig. 2 and Additional file 1: Figure S1. The modified 2D 
fully convolutional DenseNet (FC-DenseNet) was used as 
a generator. As a discriminator, that of PatchGAN model 
was borrowed, and it was modified and used according to 
the environment of this study.

The input and ground truth image of the prepared 
384 × 384 size were randomly cropped to 352 × 352 size 
and used for training of G and D, and other data augmenta-
tions were not applied. G and D were learned from scratch. 
Out of 59 datasets, 35 were used for training, 4 for valida-
tion, and 20 for testing. DL model training was conducted 
by monitoring training and validation datasets, and it was 
stopped at 200 epochs where the loss values for the vali-
dation data were saturated. Additional hyper-parameters 
for training the SCECT generation model are detailed in 
Table 1. The 20 testing datasets were independently man-
aged during the training process, and the model applica-
tion to the testing datasets was executed only once after the 
model was fully trained.

We used the mean absolute error (MAE), peak signal-to-
noise ratio (PSNR), and structural similarity index measure 
(SSIM) [18] for evaluating the image quality of the SCECT. 
The formulas used are as follows:

Here, x denotes the true value (CECT); y , the prediction 
(SCECT), MAX, the maximum possible pixel value of the 
image; MSE, the mean squared error of two images; µ , the 
average; σ , the variance or covariance; and c , the variable 
to stabilize the division with weak denominator. The lower 
the MAE and the higher the PSNR and SSIM, the better the 
values.
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Fig. 1 The overall workflow for the validation of synthetic 
contrast‑enhanced computed tomography (SCECT). The validation 
was conducted in the following three stages: (1) The similarity 
between SCECT and contrast‑enhanced CT (CECT) was evaluated; (2) 
Manual contouring was performed on SCECT and CECT with interval 
and based on it, the geometric similarity of cardiac substructures 
in each image group was measured; (3) The treatment plan was 
quantitatively analyzed based on the contours of SCECT and CECT
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Manual contouring of cardiac substructures
SCECT generation was aimed at contouring the cardiac 
structures. Accordingly, manual contouring was performed 
on SCECT of 20 testing patients by referring to the Univer-
sity of Michigan cardiac atlas [19], and geometric similarity 
evaluation with the contours of CECT was conducted. The 
SCECT predicted from the deep learning model is restored 
to another DICOM file that shares most of the information 
with the existing DICOM file of the NCT. Image informa-
tion on areas other than prediction ROI (352 × 352 × 150) 
shares that of NCT.

MIM Maestro® (MIM Software, Inc.) was used for con-
touring organs-at-risk. There were seven target substruc-
tures for delineation, including the heart, left ventricle, left 
atrium, right ventricle, right atrium, LAD, and right coro-
nary artery (RCA). A physician with more than 10 years of 
experience in breast RT delineated the cardiac substructure 
of testing datasets. In order to prevent possible bias, the 
contouring of each image group was conducted at intervals 

of more than a month. According to a recent study [20], a 
5 mm expansion was applied to the two blood vessels: the 
LAD coronary artery and RCA.

Fig. 2 Our architecture diagram for the deep learning‑based synthetic contrast‑enhanced computed tomography (SCECT) generation model. 
The generator model has five Transition Down  (TDG) and Up (TU) structures, and image features are analyzed in depth through Dense Block (DB) 
at each stage. Information of low and high‑level features initially extracted from input image is preserved until the end through skip connection 
and concatenation. The inpuf of generator is NCT, ground truth is CECT, and predicted output is SCECT. The Discriminator model has four transition 
down  (TDD) structures that are slightly different from  TDG. The input of the discriminator is a two‑channel image in which NCT is concatenated with 
CECT or SCECT, respectively. The ground truth is 0 or 1, and the predicted output is a decimal value between [0, 1]

Table 1 Hyper‑parameters for training deep learning‑based 
synthetic contrast‑enhanced computed tomography generation 
model

G, generator; D, discriminator; SGD, stochastic gradient descent

Parameter Value

No. of parameters G : 5.4 M/D : 1.6 M

Batch size 4

Loss function Adversarial + L1 loss

Optimizers G : Adam/D : SGD

Starting learning rate G : 0.0002/D : 0.00002

Number of epochs 200
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The geometric similarity between SCECT and CECT 
contour groups was evaluated using the Dice similarity 
coefficient (DSC) and mean surface distance (MSD):

Here, X denotes the true volume; Y, the predicted vol-
ume; and | |, the number of elements (voxels). S and S′ 
indicate the outer surfaces of the volume X and Y, respec-
tively, nS denotes the number of voxels of surface S, and 
d(p,S)′ is the distance between a point p on surface S and 
the surface S′ is given by the minimum of the Euclidean 
norm: d

(

p, S′
)

= min
p′∈S′

p− p′2 . A higher DSC and lower 

MSD were associated with better values.

Dosimetry analysis
A dosimetric evaluation was additionally performed 
for 20 testing datasets to determine the extent to which 
the difference in the contouring structure affected the 
final dose. Most patients included in the dataset did 
not receive RT; therefore, the treatment plan was trans-
ferred from those who underwent RT with similar 
physical geometry for this feasibility study. RayStation 
(RaySearch®) was used for the creation and transfer of 
the plan. We selected 20 plans from patients with breast 
cancer treated with RT. RT sites include left, right, or 
both breasts. All treatments were planned at 40  Gy/15 
fractions. Each plan was aligned with CT-based rigid 
registration. For more intuitive visualization, instead of 
transferring the contours of SCECT and CECT to NCT, 
the dose distribution was transferred contrary to SCECT 
and CECT (Additional file  1: Figure S3). Then, we ana-
lyzed and compared the doses irradiated in the contours 
of the cardiac substructures of SCECT and CECT. In the 
overall dose-volume histogram (DVH), the  Dmax,  Dmean, 
V5Gy, V10Gy, V20Gy, V30Gy, and V40Gy were quanti-
tatively analyzed. All the analyses and evaluations in this 
study were conducted on MATLAB (The MathWorks, 
Inc.) based on DICOM file information.

Results
Image quality evaluation of SCECT
Figure  3 depicts the inference results of the trained 
SCECT generation model. The image in the first and sec-
ond rows are examples of different slices of test datasets. 
The SCECT generation model predicted not only the 
image contrast but also the virtual interventional septum 
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structures (Fig.  2e) that were absent in NCT (Fig.  2d), 
similar to those of real CECT (Fig. 2f ).

Additional file 1: Figure S2 depicts the MAE, SSIM, and 
PSNR of NCT and SCECT compared to CECT, respec-
tively (Additional file  1). A total of 3000 slice images of 
20 testing patients were used for the quantitative evalu-
ation. While mean values (± standard deviation) of 
MAE, PSNR, and SSIM between SCECT and CECT 
were 20.66 ± 5.29, 21.57 ± 1.85, and 0.77 ± 0.06, those 
were 23.95 ± 6.98, 20.67 ± 2.34, and 0.76 ± 0.07 NCT and 
CECT, respectively. In the two-sample t-test, the results 
of all three indicators demonstrated statistically signifi-
cant differences (p ≪ 0.05).

Geometric evaluation of SCECT
Figure 4 depicts the results of manual contouring based 
on SCECT and CECT. The images of the first and sec-
ond rows are examples of two test datasets. As a result 
of the quantitative analysis of contouring (Table 2), DSCs 
of atrial and ventricular structures showed a value higher 
than 0.80, and those of vascular structures showed values 
higher than 0.55. Overall, MSD was shorter than 3 mm 
except for the RCA structure.

Dosimetric evaluation of SCECT
Additional file 1: Figure S3 shows overlaid images of rep-
resentative test datasets with CT, contours of cardiac 
substructures, and the dose distribution for dosimet-
ric evaluation (Additional file  1). Additional file  1: Fig-
ure S4 depicts an averaged DVH for all 20 test datasets 
(Additional file  1), and Table  3 summarizes a dosimet-
ric analysis. The values in the table denote the absolute 
difference between dosimetric results of SCECT and 
CECT at important clinical points in the DVHs, aver-
aged over the test datasets. Differences are displayed up 
to 1.56 Gy in  Dmax and 6.64% in the fractional volume in 
V5Gy. The MHD  (Dmean of the heart) and V5Gy of the 
left ventricle (bold text in the table) demonstrated differ-
ences of 0.13 ± 0.27 Gy and 0.71 ± 1.34%, respectively. In 
the two-sample t-test for all distinct values in Table 3, the 
results did not show statistically significant differences 
(p ≫ 0.05).

Discussion
We synthesized CECT based on DL to improve the poor 
visualization ability of NCT. We intended to distinguish 
cardiac substructures through SCECT and analyze the 
dose-volume relationship for each substructure to enable 
a more meaningful retrospective cardiac toxicity study. 
In terms of image quality, SCECT demonstrated bet-
ter similarity to CECT than NCT by quantitative met-
rics such as MAE, PSNR, and SSIM. Furthermore, it 
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provided clinicians the basis for the manual contouring 
and modification of the cardiac substructures. A dose 
analysis based on the contours drawn on SCECT did not 
reveal a considerable difference from the actual CECT. 
In particular, the small error rates of 0.13 ± 0.27 Gy and 
0.71 ± 1.34% were observed in MHD and V5Gy, respec-
tively, confirming the clinical utilization of SCECT.

The final judgment on the clinical feasibility of SCECT 
will be made through the accuracy evaluation of the 
manually drawn cardiac structures. However, the SCECT 
generation is the ‘image translation’ task from the per-
spective of deep learning. The training of the model pro-
ceeds to reduce the difference between the preset SCECT 
and the label CECT. Metrics (MAE, PSNR, and SSIM) for 
image quality evaluation are used to evaluate whether the 
SCECT generation model has been properly learned.

We did not set up a control group such as inter-rater 
variation in the ‘geometric evaluation’ part of this study. 
Instead, in the previous study by Duane et  al., [21] it 
was reported that inter-rater contour overlap (mean 
DSC) was 0.60–0.73 for left ventricular segments and 
0.10–0.53 for coronary arterial segments. Interobserver 
contour separation was 1.5–2.2 mm for left ventricular 
segments and 1.3–5.1 mm for coronary artery segments 
in terms of directed Hausdorff average distance. This 

Fig. 3 Representative images of non‑contrast computed tomography (NCT) (a, d), synthetic contrast‑enhanced CT (SCECT) (b, e), and 
contrast‑enhanced CT (CECT) (c, f) of testing datasets. The upper and lower rows indicate different slices of the test datasets

Fig. 4 Representative results of manual contouring on synthetic 
contrast‑enhanced CT (SCECT) (a, c) and contrast‑enhanced CT 
(CECT) (b, d) images
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spatial variation resulted in <1 Gy dose variation for most 
segments but 1.2–21.8 Gy variation for segments close to 
a field edge. In cardiac CT images, even if we don’t con-
sider inter-rater variation in contouring, there are intrin-
sic intra-fractional variations of cardiac structures, which 
are attributed by continuous cardiac motion and respi-
ration motion. Cardiac-gated (ECG-gated) and respir-
atory-gated CT images can eliminate the major motion 
component, but these techniques may not be routinely 
used in most centers for breast RT planning or treatment. 
Recently, Nicolas et  al. studied the heart movements in 
45 patients using a cardiac-gated CT scan and suggested 
using 5  mm of margin surrounding the coronary artery 
to account for the movements in the breast RT planning 
[20]. We speculated that the additional 5 mm margin for 
RT planning might encompass the inter-rater margin.

In the absence of treatment plans for testing datasets, 
there can be three methods for performing dosimet-
ric evaluation: (a) Based on the respective contours of 
SCECT and CECT, two optimized plans are generated 
and analyzed for each patient.; (b) single optimized plan 
is created for each patient based on NCT (or CECT) 
and evaluated by changing the contours only.; (c) plan 
transfer is performed, and dose differences are evalu-
ated based on the respective contours. Since this study 
attempted to report the dose difference according to the 
different cardiac substructures in an actual situation in 
which only NCT (or CECT) exists (where only one plan 
exists), (a) is not appropriate. In the case of (b, c), at least 
one of SCECT and CECT is not optimized for the struc-
ture. Considering additional time investment (additional 
contouring and re-optimization), we supposed that (b) 
instead of (c) would not show a significant difference in 
analysis. In the plans of 40 Gy/15 fractions, target (hot) 
dose and heart are physically far enough to have an MHD 
of less than 5  Gy in general, so we think that the plan 
transfer is sufficient for this feasibility study.

Compared with the previous studies [9–13], the novel 
points of SCECT generation from NCT were as follows: 
(1) It does not cause any burden on the clinical workflow 
because it operates without additional medical imag-
ing scans, such as CECT or MRI. (2) Previous AC stud-
ies without additional image acquisition have an intrinsic 
error because ground truth was created on NCT; in 
contrast, the ground truth of our model seems to be 

relatively reliable because it is the actual CECT. (3) It also 
provides clinicians with manual contouring and modifi-
cation because it creates detailed cardiac substructures 
instead of contours themselves.

SCECT, in turn, allowed each institution to conduct a 
retrospective dose assessment of cardiac substructures 
by applying it to the NCT of abundantly existing breast 
RT data. The implementation of SCECT generation in 
actual practice would not only benefit physicians but also 
patients. Patients would be spared from the potential side 
effects of IV contrast agents. Moreover, physicians would 
receive additional pseudo-images similar to CECT, gen-
erated from NCT without additional image acquisition. 
To the best of our knowledge, this is the first study to 
synthesize CECT for patients undergoing breast RT using 
DL, besides analyzing it quantitatively and qualitatively.

This study has several limitations. First, the number of 
evaluation datasets is relatively small in terms of assess-
ment in contouring and dosimetry. Since there were only 
20 datasets on a patient basis, it may be challenging to 
extract meaningful information in evaluations performed. 
However, SCECT generation is ultimately an image trans-
lation task, and 3,000 slice images seem to be sufficient to 
evaluate the performance of the image translation model. 
Second, CECT acts as the ground truth of the SCECT 
generation model and can have different features depend-
ing on the contrast projection protocol or the elapsed 
time following the injection. While the overall HU value 
of the whole heart was high in some cases, only specific 
structures, such as the right ventricle, appeared excep-
tionally bright in others. We did not distinguish these 
properties in this study. Therefore, the SCECT genera-
tion model was trained to make an averaged contrast fea-
ture. If more data can be acquired in the future study, it is 
necessary to develop models according to characteristics 
such as protocol and elapsed time separately. Third, exter-
nal validation using a different dataset and/or population 
is required to ensure the reliable performance and gener-
alizability of the SCECT generation model.

Cardiac structures of SCECT, such as the interven-
tional septum, are predicted artificially. Thus, they may 
differ from those of actual CECT. However, in terms of 
dosimetric analysis for cardiac toxicity studies, there was 
a slight difference in the important clinical points on each 
image group (Table 3). Considering CECT is a snapshot 

Table 2 DSC and MSD statistics between manual contours of SCECT and CECT in 20 patients

DSC, dice similarity coefficient; LAD, left anterior descending; MSD, mean surface distance; RCA, right coronary artery

Structure Heart Lt ventricle Lt atrium Rt ventricle Rt atrium LAD RCA Average

DSC 0.95 ± 0.03 0.91 ± 0.04 0.86 ± 0.08 0.85 ± 0.06 0.80 ± 0.07 0.74 ± 0.14 0.55 ± 0.20 0.81 ± 0.06

MSD (mm) 2.01 ± 0.95 1.85 ± 1.01 2.25 ± 1.03 2.41 ± 1.02 2.72 ± 0.83 2.19 ± 1.21 3.68 ± 1.60 2.44 ± 0.72
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captured at a particular time point and averaged within 
the variability of patient’s breathing, motion, and heart 
beating, the dose differences can be interpreted to be 
much smaller. The assessment of contouring should be 
designed to meet the established endpoints. Therefore, 
the results of the dosimetry analysis were considered 
appropriate to demonstrate the feasibility of SCECT 
[22]. This was similar to a case in which the synthetic 
CT used to realize MRI-only radiotherapy demonstrated 
an error < 1% in dose calculation, despite the absence of 
100% consistency with the actual CT [23]. We intend to 
continue cardiac toxicity studies according to the irradi-
ated dose of the cardiac substructures using the present 
results.

Conclusions
Our findings demonstrated the feasibility of SCECT 
generation from NCT and the potential for cardiac sub-
structure delineation in target substructures, such as the 
ventricles, atriums, and arteries, utilizing SCECT infor-
mation for breast RT. Future retrospective studies are 
likely to pave the way for deducing meaningful informa-
tion from numerous NCTs of patients undergoing RT, 
which could not be utilized in the past. Moreover, this 
technology can not only be applied to the heart but also 
to various regions, such as the abdomen, for studies other 
than radiation toxicity.
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LAD 0.38 ± 0.39 0.49 ± 1.10 2.81 ± 5.47 1.24 ± 3.45 1.20 ± 3.67 1.04 ± 4.02 0.03 ± 0.11

RCA 1.23 ± 1.63 0.59 ± 0.80 6.64 ± 8.57 3.61 ± 6.81 1.08 ± 3.57 1.11 ± 4.95 0.18 ± 0.82
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