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Abstract 

Background: This paper describes the development of a predicted electronic portal imaging device (EPID) transmis-
sion image (TI) using Monte Carlo (MC) and deep learning (DL). The measured and predicted TI were compared for 
two-dimensional in vivo radiotherapy treatment verification.

Methods: The plan CT was pre-processed and combined with solid water and then imported into PRIMO. The MC 
method was used to calculate the dose distribution of the combined CT. The U-net neural network-based deep 
learning model was trained to predict EPID TI based on the dose distribution of solid water calculated by PRIMO. The 
predicted TI was compared with the measured TI for two-dimensional in vivo treatment verification.

Results: The EPID TI of 1500 IMRT fields were acquired, among which 1200, 150, and 150 fields were used as the train-
ing set, the validation set, and the test set, respectively. A comparison of the predicted and measured TI was carried 
out using global gamma analyses of 3%/3 mm and 2%/2 mm (5% threshold) to validate the model’s accuracy. The 
gamma pass rates were greater than 96.7% and 92.3%, and the mean gamma values were 0.21 and 0.32, respectively.

Conclusions: Our method facilitates the modelling process more easily and increases the calculation accuracy when 
using the MC algorithm to simulate the EPID response, and has potential to be used for in vivo treatment verification 
in the clinic.
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Introduction
Intensity-modulated radiation therapy (IMRT) and volu-
metric-modulated arc therapy (VMAT) technologies can 
control the irradiation area more accurately, ensure that 
the tumour target receives higher and more conformal 
doses, reduce the effects on surrounding normal tissues 
or prevent unnecessary radiation, and these technologies 
are becoming increasingly common in radiotherapy [1]. 

Compared with traditional three-dimensional confor-
mal therapy, IMRT is more complicated, with a greater 
probability of errors in radiotherapy. Due to physi-
cal conditions such as the shape and location of human 
organs, as well as the working stability and repeatability 
errors of the staff and treatment equipment, differences 
between the actual irradiation dose and the planned 
dose may occur. If the dose received in the target devi-
ates significantly from the dose planned by the treatment 
planning system (TPS), radiation therapy (RT) accidents 
may occur. As treatment plans become more complex, 
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dose verification is becoming increasingly important in 
radiotherapy.

Electronic portal imaging device (EPID) has been 
applied in dose verification by many researchers due to 
its fast image acquisition speed, high resolution, good 
linear dose response, long-term stability, and ability to be 
mounted on the linac [2–4]. Dose verification with EPID 
is mainly divided into pre-treatment verification [5–7] 
and in  vivo verification [3, 8–11]. Pre-treatment verifi-
cation is performed before treatment and without the 
patient present, and in vivo verification is performed dur-
ing treatment and with the patient present. Pre-treatment 
verification cannot detect setup errors that occur during 
treatment, and in vivo treatment verification is more sen-
sitive to possible dose deviations due to changes in tumor 
size, patient weight and organ motion; thus, in vivo treat-
ment verification is more meaningful. A comprehensive 
literature review of in vivo verification was presented by 
Mijnheer et al. [12].

The use of EPID for two-dimensional in vivo treatment 
verification requires modelling the EPID response to 
predict the EPID transmission image (TI) during treat-
ment and comparing the predicted and measured TI to 
verify whether an error occurred during treatment. The 
traditional method to model the EPID response is mainly 
based on a physical model [3, 13] and the Monte Carlo 
(MC) method [6, 10]. The physical model uses a series of 
measurement data to calculate the scatter kernel of the 
EPID plane, and the scatter kernel at the central axis is 
usually used to calculate the scatter value at the off-axis 
point. Additionally, some empirical correction factors 
are used. The MC method has always been regarded as 
the "gold standard" in dose calculation and can accurately 
simulate the transport properties of various particles. 
There are two methods to simulate the EPID response 
using the MC method. One is the full MC technique [14], 
which simulates photon transport through the linac head 
and dose deposition in the EPID. The other is to simulate 
the dose kernel at the EPID plane and then convolve it 
with the fluence map to obtain the dose deposition in the 
EPID [10, 15]. Both methods require detailed linac and 
EPID structures, which are usually industrial secrets and 
difficult to obtain, and the calculation accuracy is directly 
related to the modelling accuracy. In addition, the MC 
calculation process takes a long time and is difficult to 
use in clinical practice widely. PRIMO is a free MC soft-
ware that simulates patient dose distribution according 
to the RT plan and plan computed tomography (CT). It 
has a friendly graphical user interface and calculation 
engine based on PENELOPE and the fast dose planning 
method (DPM) algorithm [16]. More importantly, it inte-
grates several commonly used linac models. The user can 
select the corresponding linac model without modelling 

the linac structure and then quickly and easily calculate 
the dose distribution of the phantom or patient without 
strong professional knowledge. PRIMO has been applied 
to the quality assurance of radiotherapy [17–20], but is 
currently unable to simulate EPID directly.

With the advancement of hardware, deep learning 
(DL) has made great progress in recent years. Due to its 
modelling potential, DL based on convolutional neural 
networks has also begun to be applied in the field of radi-
otherapy. Different DL networks have been used to pre-
dict the dose distribution of patients [21–25]. Zhang et al. 
[26] used convolutional neural networks to automati-
cally segment clinical targets and organs at risk. Valdes 
et al. [27] and Zhen et al. [28] used convolutional neural 
networks to establish an RT toxicity prediction model. 
Li et  al. [29, 30] used a classification regression model 
to predict patient-specific quality assurance results of 
VMAT plans. However, there are few studies on in vivo 
treatment verification using DL.

In this study, to reduce the difficulty of applying MC 
simulation in clinical treatment verification, we devel-
oped a simple and accurate method for two-dimensional 
in vivo treatment verification based on MC and DL. We 
used homogeneous solid water instead of the complex 
EPID. The model trained by the convolutional neural net-
work was used to convert the dose value of solid water 
calculated by PRIMO into the actual EPID response, and 
there is no need to code the geometry of the EPID. The 
advantages of our model are as follows: (1) our method 
simplifies the process of using the MC algorithm to simu-
late the EPID response; (2) our method uses a deep learn-
ing network to accurately convert the water dose into 
EPID response; (3) our method can save linac time when 
performing in vivo dose verification.

Materials and methods
Materials
The linac used in the study was a Varian Trilogy Linac 
(Varian Medical Systems, Palo Alto, CA) equipped with 
a Millennium 120 multileaf collimator (MLC). The EPID 
detector (Varian aS1000 flat panel detector) was located 
50  cm below the isocentre and covered a field size of 
40  cm × 30  cm with a resolution of 1024 × 768 pixels. 
Dark and flood fields were acquired before the experi-
ment. All measurements were performed using 6 MV 
X-rays, and the acquisition software was Image Acqui-
sition System 3 (IAS3). The MC environment used is 
PRIMO (version 0.3.64.1800).

Methods
In our study, the plan CT was expanded first, and solid 
water was inserted into the expanded CT as the equiva-
lent EPID at the EPID position to form a combined CT. 
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Then, each field in the RT plan was separated into a new 
plan. The combined CT and the new plan were imported 
into PRIMO to simulate the dose distribution of the com-
bined CT, and the dose of the equivalent EPID plane was 
derived as the input of the DL training model. The meas-
ured TI was used as the ground truth to train the DL net-
work. The trained model was used to predict the TI.

When treatment verification was performed on phan-
toms or patients, the combined CT and the new RT plan 
for each field were imported into PRIMO. PRIMO calcu-
lated the dose distribution of the equivalent EPID, and 
then the TI was predicted by the trained DL prediction 
model. The predicted TI was compared with the meas-
ured TI during treatment for two-dimensional in  vivo 
treatment verification. Figure  1 shows the flow chart of 
our study.

Calculating the equivalent EPID dose distribution
The simulation process in PRIMO is divided into three 
parts: S1, S2, and S3. S1 simulates the output of the linac 
head. The corresponding linac model can be selected in 
the PRIMO library to generate a phase-space file. Alter-
natively, phase-space files can be imported externally, 
omitting the simulation of S1. This study selected Varian 
Clinic 2300 as the linac model and used the external Var-
ian phase-space to calculate the dose. When importing 
the external phase-space files, PRIMO assumes that they 
have been tallied at the downstream end of S1.

The S2 part is used to simulate the field configuration. 
Our study processed the IMRT plan file exported from 
the TPS using in-house software and selected the Mil-
lennium 120 MLC in PRIMO. The EPID rotates with the 
gantry during treatment, and the position relative to the 
linac head remains unchanged. Making the equivalent 
EPID rotate with gantry is difficult to achieve in PRIMO, 
so we set the angle of each field to 0 and rotated the plan 
CT in the opposite direction to replace the rotation of the 
gantry according to the following process:

(1) The configuration of each subfield in the RT plan 
was extracted and written into a new DICOM file; 
for example, a plan containing three subfields was 
divided into three new RT plans, and each new RT 
plan included only one field;

(2) The gantry angle of each new plan was set to zero 
and imported into PRIMO.

Figure  2a shows an RT plan exported from the TPS 
containing three fields; the gantry angles are 30°, 120°, 
and 270°. Figure  2b, c, d are schematic diagrams of the 
new RT plans imported into PRIMO. Each plan contains 
one field.

The S3 part is used to simulate the dose distribution of 
the phantom or patient. We pre-processed the plan CT 
using the in-house software. The process consisted of the 
following steps:

Fig. 1 The flow chart of this study. The left box trains the EPID prediction model, and the right box uses the trained model to predict the EPID TI
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(1) Replace the CT value of the couch in the plan CT 
with the recommended value in the TPS;

(2) Read the gantry angle of each field from the RT 
plan, and then rotate the plan CT anti-clockwise by 
this angle;

(3) Extend the plan CT in the axial direction;
(4) Place solid water with a thickness of 5 cm (CT = 0 

HU) at 47 cm below the isocentre and assign it to 
air (CT = − 1000 HU) between the couch and solid 
water;

(5) Write the plan CT and solid water as a combined 
CT into a DICOM file and then import it into 
PRIMO.

Figure 3 shows the plan CT’s pre-processing process 
when the gantry angle of the field is 30°. Solid water 
50  cm below the isocentre was used as the equiva-
lent EPID, and solid water 3  cm above the equivalent 
EPID was used as the build-up plate. We used the DPM 
algorithm provided by PRIMO to calculate the dose 
distribution. To reduce the statistical uncertainty, the 
splitting factor was set to 100 as recommended in the 
PRIMO manual. Each field of the new RT plan was sim-
ulated separately. After the simulation, the dose distri-
bution at the coronal plane 50 cm below the isocentre 
was derived from PRIMO.

Deep learning network
For training, we used U-net, which has been indicated 
to perform well in medical image processing [31]. U-net 
consists of encoder and decoder parts, as shown in Fig. 4. 
The encoder part contains five blocks, each of which con-
tains two convolutional layers. The convolution kernel 
size is 3 × 3, and the activation function is the rectified 
linear unit (ReLU) function. Each block then implements 
the down-sampling through 2 × 2 max pooling. The 
decoder contains five blocks, each of which first performs 
a 2 × 2 up-sampling operation and a skip connection with 
the output of the block with the same resolution in the 
encoder part and then performs two 3 × 3 convolutions. 
The activation function used here is also the ReLU func-
tion. The input and the output of the last layer are super-
imposed as the output of the network.

The network’s input was the dose distribution of the 
solid water (equivalent EPID) calculated by PRIMO. 
The size of the measured TI was 1024 × 768 and was 
resampled to 256 × 192 as the ground truth. The size 
of the dose distribution derived from PRIMO was 
512 × 176, corresponding to 50  cm × 35.2  cm. To be 
consistent with the size of the EPID, a 40  cm × 30  cm 
area around the isocentre was intercepted and resam-
pled to 256 × 192. The unit of the measured TI was the 
greyscale value. The loss function used in the training 

Fig. 2 The pre-processing of the RT plan. a An RT plan exported from the TPS; b, c and d are the new RT plans after processing
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Fig. 3 The pre-processing process of the plan CT when the gantry angle is 30°

Fig. 4 The schematic framework of the DL network
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model was the mean square error (MSE). The Adam 
optimizer was used with a learning rate of 0.0001; 
default values were used for the other parameters. 
The training batch size was 12, and the model was 
trained 2000 times. The computer configuration was an 
i7-9700K CPU (Intel) and a GTX 2080 GPU (NVIDIA).

Analysis and verification method
There were 30 treatment plans with 150 IMRT beams 
used for patient treatments from various anatomic 
sites, including 10 lung cancers, 8 rectum cancers, 7 
esophagus cancers, and 5 thymoma cancers. To pre-
vent errors caused by changes in patient position, 
tumor size, patient weight, or organ motion during the 
actual treatment, these plans were transferred to dif-
ferent thicknesses (3, 5, 8, 10, 12, 15, 18, 20, 24 cm) of 
40  cm × 40  cm (length × width) solid water phantoms 
and inhomogeneous CIRS thorax phantom (CIRS, 
Norfolk, VA). In total, 1500 field data were collected, 
of which 1200 fields were used as the training set, 150 
fields were used as the validation set, and 150 fields 
were used as the test set. After training, the test data 
were input into the training model to predict the TI. 
The acquired EPID TI is not pre-processed for back-
scatter, so backscatter is included in both the training 
set and test set; the learning process of the DL network 
includes the EPID backscatter response. The predicted 
and measured TI was compared using global gamma 
analysis of 3%/3  mm and 2%/2  mm (5% threshold) to 
verify the model’s accuracy.

To ensure that planning accuracy and dose delivery in 
the training data were correct, all plans were indepen-
dently verified by Varian pre-treatment dose verifica-
tion software (Portal dosimetry) and passed the global 
3%/2 mm gamma evaluation by more than 98%.

Model sensitivity
To investigate the sensitivity of our prediction model to 
detect dose delivery errors in the phantom, several types 
of errors were deliberately introduced into the treatment 
plan and the phantom setup. The predicted TI for the 
unchanged plan and setup was compared to the meas-
ured TI for the delivery containing the errors using the 
global gamma analysis of 3%/3 mm (5% threshold). This 
was done using six IMRT treatment fields (2 lung plans, 
2 rectum plans, 1 esophagus plan, and 1 thymoma plan) 
and followed the approach similar to the method of Bed-
ford et al. [32] and Najem et al. [33]. The error plans (a–d) 
were delivered to the CIRS thorax phantom and error 
plan (e) was done using the 10 cm solid water phantom. 
The errors introduced as follow:

(a) Dose errors: The number of monitor units in all 
fields was increased by + 1% (Ea1), + 3% (Ea2), + 5% 
(Ea3), + 10% (Ea4) and − 5% (Ea5).

(b) Patient setup errors: The isocentre was shifted lat-
erally towards the patient’s right by 5  mm (Eb1), 
10 mm (Eb2), and 20 mm (Eb3) and offset by 5 mm 
(Eb4), 10 mm (Eb5), and 20 mm (Eb6) in the ante-
rior direction.

(c) Gantry angle error: The gantry angles were offset 
of + 5° (Ec1) and + 10° (Ec2).

(d) MLC errors: MLC leaves on all control points were 
opened by 5 mm (Ed1). Both banks shifted by 2 mm 
in the same direction (Ed2). The leaves of bank 
B that were within the field were shifted by 5 mm 
(Ed3). The central four MLC leaf-pairs on all con-
trol points were opened by 10 mm (Ed4).

(e) Change in phantom size: The original plan was 
delivered to the 10  cm solid water phantom, with 
5 mm (Ee1), 10 mm (Ee2), 20 mm (Ee3) and 30 mm 
(Ee4) solid water added on top.

Results
Prediction model
It took approximately 40 h to train the network on a sin-
gle GPU, and a total of 2000 training iterations were car-
ried out. After each training, the validation dataset was 
used for verification to establish the performance of the 
network, and the loss values of the final training set and 
validation set were 8.3 ×  10–6 and 4.4 ×  10–5, respectively, 
as shown in Fig. 5.

We compared the image generated by PRIMO, the 
image predicted by the DL method and the actual 

Fig. 5 The loss curves of the training set (blue) and the validation set 
(orange)
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measured image in the test set to verify the model’s 
accuracy. Figure 6 shows the image when the solid water 
was 20  cm thick, the field size was 15  cm × 15  cm, and 
the gantry angle was 0°. The first row in Fig. 6 shows the 
image generated by PRIMO (Fig.  6a), the image pre-
dicted by the DL network (Fig. 6b), and the measured TI 
(Fig. 6c). In the image generated by PRIMO, the dose dis-
tribution of the equivalent EPID is affected by noise. The 
TI generated by the DL network converts the equivalent 

EPID dose map into the actual response of EPID and 
removes the influence of noise. The predicted image is 
consistent with the measured image.

Figure  6d, e show the comparison between the image 
calculated by PRIMO and the measured image in the 
crossline and inline directions, both of which have been 
normalized to their maximum values. As the off-axis dis-
tance increases, the error between them also increases, 
and the maximum error in the field is 10%. Figure 6f, g 

Fig. 6 a The dose distribution of the equivalent EPID generated by PRIMO, b is the TI predicted by the DL network, c is the measured TI; d and 
e show the normalized dose distribution of the equivalent EPID, the normalized measured EPID TI and the relative error in crossline and inline 
directions; f and g show the predicted TI, the measured TI and the relative error in crossline and inline direction
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show the absolute value of the TI predicted by the DL 
network and the measured TI in the crossline and inline 
directions; the relative error in the field is less than 2%.

Standard global gamma analyses of 3%/3  mm and 
2%/2 mm (5% threshold) were performed on the TI pre-
dicted by the DL network and the measured EPID TI 
in the test set. The gamma pass rates were greater than 
96.7% and 92.3%, and the mean gamma values were 0.21 
and 0.32, respectively. The predicted and measured val-
ues were in good agreement. Figure 7 shows the dose dis-
tribution of the equivalent EPID generated by PRIMO, 
the predicted TI, the measured TI, and the correspond-
ing 2%/2 mm gamma distribution map of the four IMRT 
fields (1 lung cancer field, 1 rectum cancer field, 1 thy-
moma cancer field and 1 esophagus cancer field). Fig-
ure  8 shows the test set data corresponding to gamma 
pass rates of 3%/3 mm and 2%/2 mm.

Fig. 7 The dose distribution of the equivalent EPID (the first column), the prediction image (the second column), the EPID measurement image 
(the third column), and the 2%/2 mm gamma distribution map (the fourth column) corresponding to the four different fields (the first row is lung 
cancer field, the second row is rectum cancer field, the third row is thymoma cancer field and the fourth row is esophagus cancer field)

Fig. 8 Gamma analysis of the test set
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Model sensitivity
To verify the sensitivity of our prediction model to detec-
tion errors, we introduced errors to the treatment plan 
and phantom setup for comparison. The gamma indices 
for the unperturbed predicted TI with the perturbed 
measured TI are given in Table 1.

From the results reported in Table  1, our predic-
tion model should be sensitive to dose errors; when the 
dose error is greater than 3% (Ea2), the gamma pass rate 
begins to decrease. When the dose error is greater than 
5% (Ea3), the gamma pass rate is less than 86%. For the 
setup error of the phantom, when the isocentre position 
shifted laterally towards the patient’s right by 5 mm (Eb1), 
10  mm (Eb2) and 20  mm (Eb3), the gamma pass rate 
decreased continuously, whereas the measured TI was 
unaffected by the anterior offset (Eb4–Eb6). For the gan-
try angle error, when the gantry angle is offset by 5° (Ec1), 
the result changes slightly, and when the gantry angle is 
offset by 10° (Ec2), the gamma pass rate decreases sig-
nificantly. The results of MLC errors described in Table 1 
demonstrate that our prediction model is sensitive to a 
range of MLC errors, various types of MLC errors have 
different effects on gamma pass rate, and the pass rate 
is significantly reduced. We used the same method as 
Najem et al. [33] to add additional solid water slabs to the 

10 cm solid water phantom to verify the sensitivity of our 
model to patient outline changes. When the added slabs 
were larger than 10 mm (Ee2), the gamma pass rate is less 
than 95%. In summary, our prediction model is sensitive 
to dose errors, some types of setup errors, MLC errors, 
and phantom size changes. It is weakly sensitive to gantry 
angle errors.

Discussion
In this study, we converted the equivalent EPID dose 
value calculated by PRIMO into the actual EPID response 
through a DL network and compared it with the meas-
ured EPID TI during treatment for the in vivo treatment 
verification of IMRT. The results show that this method 
has the potential to be used clinically for in  vivo treat-
ment verification.

When using the MC method to simulate the EPID 
response [6, 10], the process needs to model the struc-
ture of the EPID, which is usually industrial secrets 
and requires relatively specialized knowledge. The cur-
rent version of the PRIMO software is used to calculate 
the dose of the phantom or patient, and the phantom 
or patient model could be imported from an external 
DICOM-CT file or create a slab phantom with the mate-
rial composition internally. We do not have detailed 

Table 1 The 3%/3 mm gamma pass rate for the error plans

Plan Lung 1 Lung 2 Rectum 1 Rectum 2 Esophageal Thymoma

No error 99.98 100.00 99.65 99.34 99.87 99.77

Dose error Ea1 98.72 99.54 99.12 99.31 98.53 99.47

Ea2 85.68 89.36 95.31 96.02 97.29 96.34

Ea3 73.29 82.35 85.46 82.76 79.34 80.43

Ea4 60.75 78.91 55.21 71.97 64.89 69.54

Ea5 80.23 84.42 90.56 79.36 71.75 85.55

Setup error Eb1 94.47 95.98 98.25 95.78 98.65 94.48

Eb2 86.22 88.87 94.59 89.36 91.15 80.05

Eb3 72.62 73.46 87.42 73.88 65.01 66.17

Eb4 99.78 99.78 99.57 99.02 99.74 99.42

Eb5 99.58 99.73 99.49 99.27 99.55 99.69

Eb6 99.33 99.63 99.59 99.06 99.71 99.54

Gantry error Ec1 97.91 99.50 91.04 98.31 98.52 97.83

Ec2 93.22 95.26 78.04 97.41 89.26 88.43

MLC error Ed1 4.07 4.92 5.97 5.20 6.35 6.19

Ed2 92.13 80.48 92.55 95.57 88.28 94.84

Ed3 14.23 26.41 22.13 21.97 16.81 13.12

Ed4 77.44 83.80 87.20 70.80 74.04 75.78

Phantom size change No error 100.00 99.75 99.21 99.42 100.00 98.97

Ee1 99.95 98.26 97.34 99.13 99.54 98.64

Ee2 93.18 94.21 91.64 93.64 94.15 94.31

Ee3 76.16 80.15 74.97 82.35 71.07 79.29

Ee4 55.22 50.17 64.32 48.23 40.43 53.97
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structural and compositional material information of the 
EPID. In addition, the PRIMO contains limited materials, 
and some materials that comprise EPID are not included 
(e.g., the Scintillator layer composed of Gd202S: Tb) and 
do not support user-defined materials, so it is difficult 
to simulate EPID using the full PRIMO model directly. 
Additionally, the need for long computation time has 
been a major obstacle to using MC methods in clinical 
treatment verification. In our study, the complex EPID 
was replaced with homogeneous solid water and com-
bined with the plan CT, and then the combined CT was 
imported into PRIMO to calculate the dose distribution. 
Our method does not require separate modelling of the 
EPID, and thus is simpler and more convenient than 
other methods. Furthermore, only EPID TI was acquired 
during treatment and there was no need to execute the 
treatment plan repeatedly, so the dose verification pro-
cess saves the time of the linac. The calculation time in 
our model is mainly to calculate the dose value of equiva-
lent EPID, which is related to the number of histories 
used in the MC simulation process and computer config-
uration. In our simulation, the phase-space file contains 
6.88 ×  109 histories. For an IMRT field with 110 con-
trol points, the calculation process takes approximately 
10  min, and it only takes approximately 5  s to predict 
EPID TI with the trained deep learning network.

The EPID off-axis response is different from the linac 
output, and the beam profile "horns" were removed 
after dark field and flood field correction. Moreover, the 
inverse square ratio reduced the signal, and the X-ray 
was attenuated after passing through the phantom and 
air, resulting in fewer particles reaching the equivalent 
EPID plane. The statistical uncertainty of the MC method 
increased, and the water dose calculated by MC was 
affected by noise. Therefore, the dose value calculated by 
PRIMO is different from the actual EPID response and 
cannot be converted into the EPID TI by simple linear 
scaling (Fig. 6). We modelled the conversion relationship 
between the dose value and the EPID response through 
the DL network. Due to the user-friendly and simple MC 
modelling process of PRIMO and the modelling poten-
tial power of the DL network, this model can quickly and 
accurately use the MC algorithm for in  vivo treatment 
verification.

The reported results from Table 1 show that our model 
is weakly sensitive to the gantry angle error and isocentre 
position shifted anteriorly. These results agreed with the 
results reported by Bedford et  al. [32] and Najem et  al. 
[33]. The sensitivity of the model to those errors mainly 
depends on the anatomy of the patient. When the gan-
try angle is offset by 5° and the isocentre position is off-
set in the anterior direction, the equivalent path length 
of the ray passing through the phantom does not change 

dramatically and has little influence on the EPID TI. Sup-
pose there are significant inhomogeneities in and around 
the treatment field; in that case, our prediction model has 
the potential to detect such errors that Bedford et al. [32] 
and Najem et al. [33] not detected (such as Eb1, Eb2, Eb3 
and Ec2).

Deshpande et  al. [34] also inserted solid water into 
plan CT to create a water-equivalent EPID and input it 
into the TPS to calculate the dose distribution. The dose 
distribution of the water-equivalent EPID calculated by 
the TPS was compared with the measured dose for veri-
fication. However, due to the large weight of the water-
equivalent EPID, their model could not be rotated in the 
integrated gantry, and the treatment angle could only 
be set to 0° for verification. Consequently, the phantom 
could only be used to replace the patient for pre-treat-
ment dose verification, and it is impossible to detect the 
error caused by the gantry rotation during treatment. In 
our model, the data collected during treatment include 
the actual gantry angle, thus eliminating this problem 
and allowing in vivo treatment verification.

Theoretically, our method could reverse convert the 
EPID TI to the dose in water. However, the inverse square 
ratio reduced the signal, and fewer particles reached the 
equivalent EPID plane. The equivalent EPID dose calcu-
lated by MC is affected by noise. If a noisy dose map is 
used as the label of the DL model, it will affect the results 
of dose verification. In the future, we will try to obtain 
the dose value as the label of the DL model through other 
methods (such as calculated by TPS or measured by the 
dose measurement tool) and convert the EPID TI to the 
water dose value.

PRIMO can import the patient dose distribution calcu-
lated by the TPS into the software and compare it with 
the dose distribution calculated by PRIMO [18]. How-
ever, this process verifies only the accuracy of the TPS 
calculation and fails to detect errors during the treatment 
process. In addition, PRIMO can use the DynaLog file to 
recalculate the dose distribution of the patient and com-
pare it with the result calculated by the TPS for in vivo 
treatment verification [19]. This method cannot detect 
errors caused by patient positioning. In our study, EPID 
images were acquired during treatment; if the patient 
position changed, the predicted and measured images 
would be different. Therefore, our model has the poten-
tial to detect errors caused by plan transmission, patient 
positioning, and machine failure, which provides a new 
method for in vivo treatment verification using PRIMO.

Conclusion
We developed a DL-based method to convert the dose 
value of solid water calculated by the MC method into 
the EPID response during the treatment process and 
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compared it with the measured EPID TI for two-dimen-
sional in vivo treatment verification. Because of the com-
plexity of MC method modelling, achieving acceptable 
accuracy is time-consuming, which has prevented wider 
clinical application of the MC method. Our proposed 
method makes it simpler and faster to use the MC algo-
rithm (PRIMO) to simulate the EPID response while 
ensuring calculation accuracy to facilitate in vivo radio-
therapy treatment verification.
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