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Abstract 

Background: The evaluation of automatic segmentation algorithms is commonly performed using geometric met‑
rics. An analysis based on dosimetric parameters might be more relevant in clinical practice but is often lacking in the 
literature. The aim of this study was to investigate the impact of state‑of‑the‑art 3D U‑Net‑generated organ delinea‑
tions on dose optimization in radiation therapy (RT) for prostate cancer patients.

Methods: A database of 69 computed tomography images with prostate, bladder, and rectum delineations was 
used for single‑label 3D U‑Net training with dice similarity coefficient (DSC)‑based loss. Volumetric modulated arc 
therapy (VMAT) plans have been generated for both manual and automatic segmentations with the same optimiza‑
tion settings. These were chosen to give consistent plans when applying perturbations to the manual segmentations. 
Contours were evaluated in terms of DSC, average and 95% Hausdorff distance (HD). Dose distributions were evalu‑
ated with the manual segmentation as reference using dose volume histogram (DVH) parameters and a 3%/3 mm 
gamma‑criterion with 10% dose cut‑off. A Pearson correlation coefficient between DSC and dosimetric metrics, i.e. 
gamma index and DVH parameters, has been calculated.

Results: 3D U‑Net‑based segmentation achieved a DSC of 0.87 (0.03) for prostate, 0.97 (0.01) for bladder and 0.89 
(0.04) for rectum. The mean and 95% HD were below 1.6 (0.4) and below 5 (4) mm, respectively. The DVH parameters, 
V 60/65/70Gy for the bladder and V 50/65/70Gy for the rectum, showed agreement between dose distributions within 
± 5% and ± 2% , respectively. The D 98/2% and V 95% , for prostate and its 3 mm expansion (surrogate clinical target vol‑
ume) showed agreement with the reference dose distribution within 2% and 3 Gy with the exception of one case. The 
average gamma pass‑rate was 85%. The comparison between geometric and dosimetric metrics showed no strong 
statistically significant correlation.

Conclusions: The 3D U‑Net developed for this work achieved state‑of‑the‑art geometrical performance. Analysis 
based on clinically relevant DVH parameters of VMAT plans demonstrated neither excessive dose increase to OARs 
nor substantial under/over‑dosage of the target in all but one case. Yet the gamma analysis indicated several cases 
with low pass rates. The study highlighted the importance of adding dosimetric analysis to the standard geometric 
evaluation.
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Background
The anatomical structure of the male pelvic region with 
the prostate surrounded by seminal vesicles, bladder, and 
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rectum, makes modern intensity modulated radiation 
therapy (RT) a favorable technique for the treatment of 
localized prostate cancer [1–3]. However, due to vari-
able bladder and rectal filling, random shifts, and defor-
mations of neighboring organs, online adaptation of the 
treatment plan would be necessary in order to take full 
advantage of modern radiotherapy techniques [4, 5].

Recontouring of the target volume (TV) and organs at 
risk (OARs) is an important step in treatment plan adap-
tation. Previous studies have shown that manual delinea-
tion is not only time-consuming (in the order of several 
minutes) but also prone to inter- and intra-physician var-
iability [6–8].

To address these problems, considerable scientific 
efforts have been made to develop efficient automatic 
segmentation tools. Previously, auto-segmentation meth-
ods such as (multi)atlas based and hybrid techniques 
have been considered state-of-the-art [9]. Over time, 
methods based on convolutional neural networks (CNN) 
[10] gained more attention [11, 12]. Milletari et  al. [13] 
proposed a 3D fully convolutional neural network archi-
tecture trained end-to-end on magnetic resonance (MR) 
prostate images, referred to as V-Net, and introduced a 
novel objective function based on the Dice similarity 
coefficient (DSC). Balagopal et al. [14] presented a hybrid 
network, having an additional 2D localization network 
prior to the 3D segmentation network to delineate pros-
tate, bladder, rectum, and femoral heads on pelvic com-
puted tomography (CT) images. In order to overcome 
the challenges of low soft tissue contrast in CT images as 
well as blurry boundaries, Wang et al. [15] and Tong et al. 
[16] focused additionally on edge enhancement tech-
niques. Sultana et al. [17] proposed a two-stage network 
combining U-Net and generative adversarial network 
(GAN) architectures [18] for structure localization fol-
lowed by precise prediction of organ delineation.

Evaluation metrics that are commonly used to meas-
ure segmentation performance focus purely on geomet-
ric accuracy. The most frequently used are the DSC, the 
mean, 95%, or maximal Hausdorff distance (HD), the 
positive prediction value (PPV) or the sensitivity [19]. 
The two main ideas behind them are: (1) a pixel-wise 
comparison of ground-truth and predicted segmenta-
tion and (2) measuring the distance between the ground-
truth and the predicted contours. What carries a higher 
relevance in clinical practice, however, is the dosimetric 
accuracy and the quality of the treatment plans that can 
be achieved on the basis of the predicted segmentations 
[12, 20]. At the time of writing, no studies exist that have 
investigated and quantified the dosimetric impact of CT 
organ delineations for prostate cancer patients obtained 
from deep CNNs.

In this work a state-of-the-art 3D U-Net architecture 
for automatic organ segmentation in CT images of low-
grade prostate cancer patients was trained. The train-
ing was carried out separately for the bladder, prostate, 
and rectum which are the most important structures for 
prostate cancer treatment. Since in patients with low-
grade prostate cancer, tumorous tissue is located only 
in the prostate, seminal vesicles were not considered for 
segmentation. Clinically acceptable VMAT plans were 
created for all test cases using manual segmentations 
and the automatic segmentations obtained from the 
3D U-Net. This allowed to infer the dosimetric impact 
of deep learning delineations, which is still rarely pre-
sent in the literature. The quality of the treatment plans 
optimized on the automatically generated contours was 
compared with the reference plans in terms of dose vol-
ume-histogram (DVH) parameters, conformity index 
(CI) and gamma pass rate. In addition, a standard con-
tour-based analysis based on DSC as well as on average 
and 95th percentile HD calculation was performed. Both, 
geometric and dosimetric evaluation metrics, were com-
pared in terms of Pearson correlation coefficient to inves-
tigate a possible correlation between them.

Methods
Database
The dataset used in this study consisted of 69 CT images, 
along with delineated structures associated with the low-
grade prostate cancer treatment performed at the Klini-
kum Großhadern of the Ludwig Maximilian University 
(LMU) of Munich. Patients with substantial CT artifacts 
due to the presence of metal hip implants (1 patient) and 
fiducial markers (9 patients), causing artifacts throughout 
the image and especially in the prostate area, were not 
included in this study. The use of an ultrasound probe 
for prostate monitoring during irradiation in several 
cases, did not interfere with CT imaging of the pelvic 
region, therefore such cases were also included. Simi-
larly, the presence of prostate calcification did not rule 
out the inclusion of images in the study. CT data have 
been acquired with a Toshiba Acquilion LB CT scanner 
(Canon Medical Systems, Japan) using 512× 512 pixels 
in the axial plane and a variable number of slices. Voxel 
size was 1.074 × 1.074 × 3  mm3 . OARs, in particular 
bladder and rectum, were delineated by a trained radia-
tion oncologist and stored as point clouds (DICOM RT-
structs). The prostate contours were redrawn under the 
supervision of a trained physician according to guidelines 
for low grade (stage I and II) prostate tumor patients. 
Using plastimatch [21] images and segmentations were 
converted from the DICOM RT-struct format, which is 
required by treatment planning systems and contour-
ing software, into binary masks that are used during the 
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neural network training. Images and binary masks were 
resampled with the help of nearest neighbor interpola-
tion for masks and linear interpolation for images, to a 
1× 1× 1  mm3 spaced grid, which was advantageous 
for the subsequent data augmentation at training stage. 
While aiming to minimize the influence of contour con-
version between the DICOM RT-struct format, defined 
on a 1.074 × 1.074 × 3  mm3 grid, and binary masks, 
defined on a 1× 1× 1 mm3 grid, we found that employ-
ing resampling with nearest neighbor interpolation intro-
duced negligible alterations to the structures. Finally, the 
dataset has been split into a training, validation, and test 
sets of 47, 11, and 11 images, respectively. This partition-
ing was a trade-off between providing enough statistic 
for testing and validation as well as introducing sufficient 
variability into the training set.

3D U‑Net
The 3D U-Net presented here is based on the V-Net 
architecture [13], developed initially for prostate deline-
ation on MR images. The encoding arm of the network 
is composed of five levels (including the lowest one) 
each comprising one (1st level), two (2nd level) or three 
(3rd–5th levels) convolutional layers and having 16, 32, 
64, 128, 256 channels, respectively. The kernel size has 
been set to 5× 5× 5 , stride to 1× 1× 1 and group nor-
malization has been applied after each convolution. The 
output of a given level is used in the subsequent one as 
input for the first convolution and is added to the out-
put of the last convolution, thus creating a residual con-
nection. For downsampling between the network levels 
convolution with a kernel of size 2× 2× 2 and stride 2 
was used. Throughout the network the PReLU activation 
was applied. The decoding arm of the 3D U-Net is built 
in an analogous way, with up-convolution to increase the 
image size instead. The output of each level of the encod-
ing arm (before the dowsampling) is concatenated with 
the corresponding input of the decoding arm. The last 
layer of the network uses the soft-max activation and 
thresholding of 0.5 to produce two binary masks repre-
senting segmentation of the structures and the back-
ground. For this project only the segmentation of the 
structures is relevant.

Data augmentation
The data augmentation, applied with probability paug to 
each input pair, i.e. image and its segmentation, included 
3D rotations around the image center (always aligned 
with the prostate center of mass), translations, B-Spline-
based deformations, and zooming. Translations can be 
described by three parameters [ xtrans , ytrans , ztrans ] denot-
ing the maximal translation distances along each axis. 
Similarly, Euler rotations can be denoted by the maximal 

rotation angles [ α , β , γ ] around the superior-inferior, 
anterior-posterior and medial-lateral axis, respectively. 
Zooming re-sizes each axis by a factor randomly drawn 
from [ lmin , lmax ]. The pixel intensities have been trun-
cated to fit the soft tissue window [ Imin , Imax ] and sub-
sequently rescaled to [−  1, 1]. The deformation field is 
defined on a grid of n× n× n control points with ran-
dom shifts drawn from a Gaussian distribution [µ , σ ]. In 
the last step of the augmentation pipeline, a central part 
of each image has been cropped to 128×128×128 due to 
memory limitations on the GPU. Nevertheless, the clini-
cally relevant high dose regions close to the prostate 
were not affected by the cropping. While setting the ini-
tial values for the data augmentation parameters, special 
care was taken not to introduce strong artifacts or create 
unrealistic deformations.

Training
Training on single-label data has been performed sepa-
rately for three regions of interest: prostate, rectum, and 
bladder. Each model has been trained on an NVIDIA 
Quadro P6000 GPU with the Keras implementation of 
the Adam optimizer ( β1 = 0.9, β2 = 0.999, ǫ = 1e − 07 ) 
and the Dice loss function applied to both, segmenta-
tions and the background. The set of hyper-parameters 
to be optimized can be divided into two sub-groups: data 
augmentation related parameters such as maximal trans-
lation shifts, rotation angles, zooming and soft-tissue 
window limits, B-Spline deformation parameters, aug-
mentation probability and training related parameters 
such as the learning rate and number of epochs. The 
optimization of the hyper-parameters was performed via 
a random search. Training with a certain set of hyperpa-
rameters was performed until the loss function evaluated 
on the validation data did not decrease further for several 
dozen epochs.

Treatment planning
For all test cases, single arc photon VMAT treatment 
plans were generated using a research version of the 
commercial treatment planning system (TPS) RaySta-
tion (version 8.99, RaySearch, Sweden). All plans aimed 
at a total dose of 74 Gy in 37 fractions. The generic beam 
model of an Elekta Synergy Linac (Elekta, Sweden) with 
Agility multi-leaf-collimator was used. For each test 
case, two treatment plans were optimized on the same 
planning CT image, one based on the expert segmen-
tation and one based on the 3D U-Net segmentation 
of rectum, bladder, and prostate. In both scenarios, in 
accordance with our facility’s clinical guidelines, a PTV 
margin of 6  mm (posterior 5  mm) was applied around 
the prostate. The same optimization settings, i.e., the 
same objectives and weights for planning target volume 
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(PTV), bladder, and rectum, for both manual and auto-
matic segmentation were used. Settings were chosen 
using the expert segmentation such that a PTV coverage 
of at least V 95% = 100% was achieved (no normalization 
was applied after optimization), while dose to OARs was 
below the recommendations of the QUANTEC report 
[22]. Since the dose optimization problem does not have a 
unique solution, calculation outcomes might be different, 
despite using highly similar sets of contours. In order to 
perform a dosimetric evaluation that captures differences 
in dose distributions caused primarily by variations in the 
delineated structures and not by the solution ambiguity 
of the optimization problem, care was additionally taken 
to choose optimization settings that produce consistent 
planning results by applying small perturbations to the 
manual segmentation. For this, the original RT-structs 
were converted to binary masks and back to DICOM RT-
structs. Then a new plan was generated with the same 
optimization settings and dosimetrically compared to the 
initial plan using the original RT-structs. With the final 
parameters (see weights in Table  1) dose distributions 
for all test cases were achieved that deviated less than 
± 2% in the considered OAR and target DVH parameters 
(see following section) but were not statistically signifi-
cant. For all test patients and all calculated dose distri-
butions, the ICRU Report 83 guidelines concerning the 
PTV [23], i.e. D 98% ≥ 95% of the prescribed dose and 
D 2% ≤ 107% of the prescribed dose , were met as well. 
These settings were then used to optimize treatment 
plans using the 3D U-Net segmentations without fur-
ther user interaction. Table 1 summarizes the goals of the 
treatment planning along with the importance of each 
factor.

Data evaluation
In order to evaluate the network-generated contours, 
DSC, average HD and 95% HD (defined as 95th percen-
tile of the distances between boundary points), have been 
calculated for all test cases with expert delineations as the 
reference ground truth. Since there is no clear bound-
ary between the rectum and colon, evaluation of the 
network predictions was limited to the slices containing 
the ground truth segmentation, i.e. no additional penalty 
was applied for colon misclassification. Apart from that, 
geometric data evaluation (DSC, HDavg , and HD95% ) has 
been restricted to the 128× 128× 128 volume.

The dose distributions for predicted and ground truth 
contours were analyzed using a 3D global gamma-crite-
rion with a pass-rate of (3%, 3  mm), where only voxels 
with at least 10% of the prescribed dose were consid-
ered. Additionally, CI defined by Paddick [24] was cal-
culated. This index has an ideal value of one and plan 
quality decreases with decreasing index value. Both dose 
distributions were also compared in terms of clinically 
relevant target and OAR DVH parameters. For prostate 
and its 3 mm expansion (surrogate CTV), values of D 98% , 
D 2% and V 95% were determined. Similarly, for the rectum 
V 50/65/70Gy and for the bladder V 60/65/70Gy were calcu-
lated. All DVH parameters were determined using the 
ground truth segmentations and the dose distributions 
optimized either on the predicted or on the ground truth 
contours. To assess the statistical differences between 
DVH parameters for plans optimized on the manually 
and the U-Net generated contours, a Wilcoxon signed-
rank test with a statistical significance threshold of 
p = 0.05 was used.

To investigate the correlation between the dosimetric 
and geometric metrics, the Pearson correlation coeffi-
cient [25] between (1) DSC of prostate and gamma index, 
(2) average DSC and gamma index, and (3) DSC and 
DVH parameters were calculated.

Results
Hyperparameter optimization
The following values of hyperparameters have 
lead to satisfactory results: paug = 0.93 , rota-
tion angles α = 20◦ , β = γ = 10◦ , translation shifts 
xtrans = ytrans = ztrans = 10mm , lmin = 0.9 , lmax = 1.1 , 
Imin = −150HU , Imax = 150HU , grid control points 
n× n× n = 15× 15× 15 , µ = 0 , σ = 30 . After 20k 
epochs with a batch size of two, we found all the loss 
functions to converge with no signs of overfitting. The 
learning rate of 10−3 has been shown to perform best.

Contour‑based analysis
Figure 1 illustrates ground truth and automatically-gen-
erated delineations of prostate, rectum, and bladder for 

Table 1 Clinical goals used in the TPS RayStation for VMAT plan 
generation

For each region of interest (ROI) a given objective function was assigned. 
Weights were normalized to 1 and indicate the importance of each parameter 
during plan optimization

Function ROI Description Weight

Max dose Rectum 74 Gy 0.03

Max EUD, A = 12 Rectum 64 Gy 0.11

Max EUD, A = 8 Bladder 63 Gy 0.03

Min dose PTV 74 Gy 0.42

Uniform dose PTV 74 Gy 0.07

Max dose PTV 77.7 Gy 0.21

Dose fall‑off External [H]74 Gy, [L] 10 Gy, 0.13

Low dose distance 1 cm
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Fig. 1 Axial, sagittal, and coronal slices showing (solid lines) the ground truth contours and (dashed lines) predictions generated by the 3D U‑Net. 
(Red) prostate, (green) rectum, and (blue) bladder delineations are presented for three test patients showing (left) the worst, (middle) closest to the 
average, and (right) the best agreement with the ground truth by means of DSC for prostate. The black box indicates the region where the contours 
were predicted by the U‑net

Table 2 Contour based metrics: DSC, average Hausdorff distance (HDavg ) and 95% Hausdorff distance (HD95% ) of all test patients

The last row presents the mean and standard deviation (STD) over all test cases

DSC (HDavg/95% ) (mm)

Prostate Bladder Rectum Prostate Bladder Rectum

Pat. 11 0.90 0.96 0.90 1.4/4.5 1.0/2.3 1.2/4.0

Pat. 14 0.88 0.96 0.88 1.5/3.6 1.0/3.6 1.2/3.5

Pat. 27 0.86 0.97 0.91 1.5/3.7 0.9/2.2 1.1/3.0

Pat. 32 0.87 0.96 0.78 2.2/5.1 1.1/3.2 3.4/14.9

Pat. 43 0.85 0.94 0.90 1.7/4.2 1.5/3.2 1.2/3.3

Pat. 44 0.88 0.96 0.92 1.3/3.6 0.8/2.1 0.8/2.2

Pat. 52 0.83 0.97 0.92 2.0/5.5 0.9/2.3 1.4/3.5

Pat. 59 0.82 0.97 0.90 2.3/6.2 0.9/2.6 1.3/4.9

Pat. 81 0.91 0.97 0.87 1.2/3.4 0.9/2.1 1.8/8.3

Pat. 82 0.92 0.97 0.88 1.0/2.3 0.8/2.1 1.2/3.5

Pat. 90 0.85 0.97 0.91 1.6/4.3 0.8/2.1 1.0/2.9

Mean (STD) 0.87 (0.03) 0.97 (0.01) 0.89 (0.04) 1.6 (0.4)/4 (1) 0.95 (0.2)/2.5 (0.5) 1.4 (0.7)/5 (4)
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three test patients. Images with the best, closest to the 
average, and the worst values of DSC for prostate are 
displayed.

Table 2 collects the results of the geometric analysis for 
all test patients. Mean DSCs (standard deviation) of 0.87 
(0.03), 0.97 (0.01), 0.89 (0.04) were achieved for the pros-
tate, bladder, and rectum, respectively. The highest aver-
age DSC value was observed for the bladder, which can 
be attributed to its relatively large size. A slightly worse 
performance has been observed for rectum and subse-
quently prostate. The values of the average HD were 1.6 
(0.4) mm, 0.95 (0.2) mm, 1.4 (0.7) mm for prostate, blad-
der, and rectum, respectively. The values of the 95% HD 
show the same trend 4 (1) mm, 2.5 (0.5) mm, 5 (4) mm 
for prostate, bladder, and rectum, respectively.

Dosimetric analysis
Figures  2, 3 and 4 illustrate dose distributions of three 
exemplary patients with the highest, the average, and 
the lowest gamma pass-rate in axial, sagittal and coro-
nal views. The reference dose distribution optimized 
using the ground truth contours, the 3D U-Net dose 

distribution optimized using the predicted delineations, 
and their difference are shown. Deviations from the ref-
erence plan were found to be in the range of ± 10% and 
were located primarily outside of the prostate. The largest 
differences were found close to the borders of the PTV 
region, where dose gradients are steep (6 mm away from 
the prostate boundary).

The quantitative results of the dosimetric comparison 
are summarized in Table  3. The value of the CI for the 
reference plans is in the range of 0.81 and 0.89 with an 
average (standard deviation) of 0.85 (0.03). For the plans 
calculated on 3D U-Net generated contours the CI is in 
the range of 0.69 and 0.88 with an average of 0.78 (0.06). 
The gamma-pass rates (3 mm, 3%) were between 71 and 
94%, with an average value of 85%.

Figure  5 illustrates differences between clinically rel-
evant DVH parameters of the two optimized dose dis-
tributions, evaluated on the reference, i.e. manually 
delineated, contour set. Again, the reference dose distri-
bution was optimized using the ground truth delineations 
and compared the the dose distribution optimized on 
the 3D U-Net predicted contours. For rectum and blad-
der, all the differences are below 5% and 2%, respectively. 

Fig. 2 Dose distributions on axial slices of three test patients showing (left) the worst, (middle) the average and (right) the best agreement 
quantified by the gamma‑index of the treatment plan optimized on (top) the manual segmentation and (middle) the 3D U‑Net segmented images. 
Additionally, relative dose differences are presented. For improved visibility, dose below 25% of the dose prescribed to PTV and deviations below 
0.4% on the difference plot are not displayed. Ground truth contours of (green) rectum, (blue) bladder, and (red) prostate, are also shown. The black 
box indicates the region where the contours were predicted by the U‑Net



Page 7 of 12Kawula et al. Radiation Oncology           (2022) 17:21  

None of them has been found to be statistically signifi-
cant ( p ≥ 0.05 ). No clear trend of increased or decreased 
bladder and rectum dose for the 3D U-Net segmenta-
tion-based plans was found. Similarly, differences for the 
target volume are mostly below 3 Gy/2% for D 98 , D 2 and 
V 95 , apart for one outlier (patient 59, 10% of the test set) 
where the network struggled to delineate the prostate, 
which is also reflected in the relatively low DSC of 0.82 
and gamma index of 71%. The only statistically signifi-
cant differences have been found for the surrogate CTV 
for D 98 and V 95 . No tendencies for the D 2 parameter have 
been observed, but the 3D U-Net based plans tend to 
have reduced values of D 98 and V 95 for both, prostate and 
its 3 mm expansion, indicating a slight reduction of tar-
get coverage which is in line with the reduced CI values.

Pearson correlation coefficient
The Pearson correlation coefficient with the p value 
for the DSC of prostate and gamma index was 0.67 
( p = 0.023 ), which shows a moderate positive correla-
tion. No statistically significant results were obtained for 
the other parameters.

Discussion
In this work a 3D U-Net has been successfully trained 
and applied for CT-based organ segmentation in the 
male pelvic area. The evaluation of the network’s per-
formance was based not only on the commonly used 
geometric metrics, but also on clinically relevant dosi-
metric parameters.

Satisfactory performance was observed with regard 
to the geometric accuracy of the contour delinea-
tion, indicating a high degree of similarity between 

Fig. 3 Dose distributions on sagittal slices of three test patients showing (left) the worst, (middle) the average and (right) the best agreement 
quantified by the gamma‑index of the treatment plan optimized on (top) the manual segmentation and (middle) the 3D U‑Net segmented images. 
Additionally, relative dose differences are presented. For improved visibility, dose below 25% of the dose prescribed to PTV and deviations below 
0.4% on the difference plot are not displayed. Ground truth contours of (green) rectum, (blue) bladder and (red) prostate are also shown. The black 
box indicates the region where the contours were predicted by the U‑Net



Page 8 of 12Kawula et al. Radiation Oncology           (2022) 17:21 

automated and manual segmentations. The best results 
were observed for bladder segmentation, followed by 
the rectum, and prostate. The best values of DSC and 

HD for the bladder can be explained firstly, by its sim-
ple geometry and secondly, by its relatively large size, 
which makes an incorrect prediction of a group of edge 
pixels  less relevant with regard to the correctly classi-
fied central part of this organ. The low contrast of the 
prostate on the CT images makes its segmentation 
most challenging, which was reflected in a DSC of 0.87. 
With the exception of one case (Pat. 32) in which a sub-
stantial portion of the colon was misclassified as part 
of the rectal contour, the rectum segmentation showed 
a relatively high dice equal to 0.87. Since the rectum-
colon boundary is visually difficult to identify and is not 
located in the high dose region, we decided to reduce 
the penalty for this type of misclassification during the 
final evaluation (testing) by truncating the volume of 
interest to the axial slices that contained the ground 
truth segmentation.

Quantitative test outcomes showed state-of-the-art 
network performance in terms of DSC, mean and 95% 
HD. The 2D–3D hybrid network for localization and 
subsequent organ segmentation proposed by Balagopal 
et  al. [14] achieved a DSC of 0.9 for prostate, 0.95 for 

Fig. 4 Dose distributions on coronal slices of three test patients showing (left) the worst, (middle) the average and (right) the best agreement 
quantified by the gamma‑index of the treatment plan optimized on (top) the manual segmentation and (middle) the 3D U‑Net segmented images. 
Additionally, relative dose differences are presented. For improved visibility, dose below 25% of the dose prescribed to PTV and deviations below 
0.4% on the difference plot are not displayed. Ground truth contours of (green) rectum, (blue) bladder and (red) prostate are also shown. The black 
box indicates the region where the contours were predicted by the U‑Net

Table 3 Gamma pass rate (3 mm, 3%) and conformity index 
calculated for plans optimized on manual (CIman ) and 3D U‑Net 
(CI3DU−Net ) generated segmentations of all test patients

CIman CI3DU−Net (3 mm, 3%) (%)

Pat. 11 0.87 0.78 91

Pat. 14 0.83 0.83 89

Pat. 27 0.83 0.75 88

Pat. 32 0.89 0.77 79

Pat. 43 0.83 0.78 93

Pat. 44 0.82 0.88 94

Pat. 52 0.84 0.69 77

Pat. 59 0.87 0.70 71

Pat. 81 0.88 0.82 87

Pat. 82 0.85 0.85 92

Pat. 90 0.81 0.72 74

Mean 0.85 (0.03) 0.78 (0.06) 85 (8)
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bladder and 0.84 for rectum. The edge-calibrated multi-
task network by Tong et al. [16] showed an overall blad-
der, rectum, and prostate segmentation performance of 
DSC = 0.89. The UNet-GAN hybrid architecture by Sul-
tana et al. [17] achieved DSC = 0.90 for prostate. A more 
detailed comparison is shown in Table  4. In all studies, 
bladder achieved the highest segmentation accuracy, fol-
lowed by prostate and rectum.

In the current work, 1 patient with a metal hip implant 
and 9 patients with fiducial markers were excluded from 
the study due to artifacts. Applying the trained network 
to these cases resulted in a DSC of 0.60 (7) for prostate 
and average Hausdorff distance of 32.5 (8)  mm, dem-
onstrating that the trained network cannot be used for 
images with such artifacts. The available 10 cases are 
neither sufficient to train a separate model nor to expect 
a visible effect on the training in combination with the 
other training data-sets (several images would also have 
to be set aside for validation and testing, further reduc-
ing the training dataset). A potential solution to this issue 
could be collecting a larger database of images with arti-
facts and carrying out an independent training.

The ground truth bladder and rectum segmentations 
were assembled over a course of 2.5 years at the LMU 
Klinikum and originated from several physicians. In con-
trary, prostate segmentation has been re-drawn for the 
purpose of this study. Multi-observer contours in the 
training set might be seen as an advantage, as the net-
work learns how to generalize and does not adjust to the 
contouring style of one physician only. On the other hand 
this might lead to lower testing outcomes, since the net-
work predictions compared against contours drawn by 
different physicians will be ranked differently. This also 

Fig. 5 Differences between the two treatment plans optimized 
using U‑Net‑ and manually‑generated contours. DVH parameters for 
(top) OARs (bladder and rectum) and (bottom) TV (prostate, prostate 
+ 3 mm margin). Each patient is represented by a single data 
point, while whiskers indicate the 5th–95th percentile. Dose values 
correspond to the total dose of 74 Gy delivered during fractionated 
treatment. Asterisks indicate the statistically significant differences

Table 4 Quantitative comparison of geometric metrics with state‑of‑the‑art segmentation algorithms

Present work Balagopal et al. [14] Sultana et al. [17] Tong et al. [16]

Prostate

DSC 0.87 ± 0.03 0.90 ± 0.02 0.90 ± 0.05 0.86 ± 0.06

HDavg 1.6 ± 0.4 – 1.56 ± 0.37 1.01 ± 0.65

HD95% 4 ± 1 – 5.21 ± 1.2 3.51 ± 1.66

Bladder

DSC 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.02 0.96 ± 0.02

HDavg 0.95 ± 0.2 – 0.95 ± 0.15 0.97 ± 0.53

HD95% 2.5 ± 0.5 – 4.37 ± 0.56 3.17 ± 3.61

Rectum

DSC 0.89 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.86 ± 0.07

HDavg 1.4 ± 0.7 – 1.78 ± 1.3 1.22 ± 1.05

HD95% 5 ± 4 – 6.11 ± 1.5 4.34 ± 5.30
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sets an upper limit on the network performance meas-
ured by means of geometric metrics which is in the order 
of the expectable inter-observer differences [26].

Due to GPU memory limitations, images were cropped 
around the prostate center of mass, causing truncation 
of bladder and rectum parts in some cases. On the one 
hand, this could have made it easier to predict the outer 
walls, on the other hand, this reduced the organ volume. 
Since these factors have the opposite effect on DSC and 
are small in themselves, the effect on DSC is deemed 
negligible, while the value of HD might have been slightly 
underestimated. The truncated sections were always 
located in the low dose region and therefore dosimetric 
analysis and plan optimization were not affected.

In the scope of the additional dosimetric analysis, tar-
get volume D 98 , D 2 and V 95 of the plans optimized using 
3D U-Net contours were found to differ only slightly 
from the reference plans based on expert delineations, 
however a trend of lower D 98 and V 95 was observed as 
shown in Fig. 5. In only one case (patient 59), major devi-
ations, i.e. D 98 = − 14.59 Gy and V 95 = − 7.02% for sur-
rogate CTV, were observed. This can be attributed to an 
incorrect prostate contouring that is shifted towards the 
bladder, as can be seen in Fig. 1.

The average value of the CI was 0.78 (0.06) for the plans 
optimized on 3D U-Net generated contours and 0.85 
(0.03) for reference plans. The lower value of the average 
CI confirms slightly worse target coverage. The treatment 
plans derived from automatic contours yielded lower CI 
since the evaluation was performed using the ground 
truth contours. In contrary, the reference plans have been 
optimized and evaluated on the same set of contours, and 
are thus biased towards higher values by design.

Due to the lack of an absolute reliability of the auto-
matic segmentation, human review is still unavoidable. 
Nonetheless, introducing a method that has a potential 
to accelerate the contouring process in the majority of 
cases, as it was show in [27] or in a similar study consid-
ering lung cancer patients [28], would be an improve-
ment with respect to current clinical practice.

Analysis of DVH parameters for rectum showed that 
treatment plans optimized on 3D U-Net-generated con-
tours did not result in statistically significant differences 
measured by V 50/65/70 Gy . No statistically significant dif-
ferences were found for the bladder as well. Results indi-
cate that plans optimized on automatically generated 
contours do not overdose the neighboring OARs, i.e. 
bladder and rectum.

The gamma index analysis resulted in pass rates of 
71–94% with a mean value of 85%. The most promi-
nent differences between dose distributions have been 
detected close to the PTV border. The degree of the 

discrepancies correlates closely with the discrepancies 
between PTV borders (ground truth and predicted) as 
steep dose gradients are desirable during dose optimi-
zation. Thus, the main organs affected by these differ-
ences were the bladder and the rectum, for which the 
most relevant DVH indices have been carefully ana-
lyzed in this study. Inside the PTV we did not observe 
any ‘hot-spots’ exceeding 107% of the prescribed dose. 
We also did not notice any consistent dose clustering 
outside of the PTV. The maximum dose delivered to 
femoral heads was always below 35 Gy, which is signifi-
cantly lower than the recommended threshold of 50 Gy.

The only statistically significant correlation was found 
between the DSC of the prostate and the gamma index. 
The Pearson coefficient showed a moderately positive 
correlation only. No statistically significant correlation 
was found between the gamma pass-rate and the DSC 
values of OARs and between the DVH parameters and 
the DSC. On the contrary, we have observed that it is 
not uncommon for patients to show a very similar DSC 
for the prostate, which is the most important segmen-
tation in relation to the treatment planning of prostate 
cancer, while showing a very different gamma pass-
rate e.g. DSCPat.43 = DSCPat.90 = 0.85 while γPat.43 = 93 
and γPat.90 = 74 or DSCPat.44 =  0.88, DSCPat.81 =  0.91 
while γPat.44 = 94 and γPat.81 = 87 . This leads to the 
conclusion, that a high geometric similarity between 
contours, commonly evaluated by the means of DSC, 
does not necessarily result in a high fidelity dose dis-
tribution optimized using these contours. Since eventu-
ally, the dosimetric analysis is clinically more relevant 
the results of this study highlight that the latter should 
always be carried out in addition to the geometric 
analysis.

Another important factor to consider is the contour 
conversion between two formats: the point cloud for-
mat (DICOM RT-Struct) required by the contour-
ing software as well as the TPS, and the binary masks 
required for CNN training. The use of nearest neigh-
bors interpolation in the conversion pipeline did not 
introduce any noticeable differences during structure 
conversion.

One possible improvement to this study could be to 
prepare separate training images for the bladder and 
rectum by cropping images around their mass centers 
and adjusting the soft tissue window to match closer 
their HU range. This could help create more precise 
contours, but should not significantly affect the dosi-
metric analysis as the parts of the OAR structures rele-
vant for treatment planning are located in close vicinity 
of the prostate, which was used as center for crop-
ping in this study. Furthermore, prostate patients with 
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tumor stages III and IV could be included in future 
studies by including seminal vesicles in the prostate 
contour or training a separate network. However, this 
is a challenging task since in clinical practice the CTV/
PTV might contain different proportions of seminal 
vesicles depending on the exact tumor stage. Therefore, 
the CTV/PTVs including the seminal vesicles might 
have more pronounced variations between patients and 
thus more training data would be required.

Conclusions
A 3D U-Net was successfully trained for organ segmen-
tation on CT images of the male pelvic region. The geo-
metric accuracy measured with DSC, mean and 95% HD 
showed state-of-the-art performance of our algorithm. 
Analysis based on clinically relevant DVH parameters of 
VMAT plans did not show excessive dose enhancement 
to OARs and proved sufficient for treatment target vol-
ume coverage in nine out of ten cases. Nevertheless, the 
gamma pass rate was not always acceptable, indicating 
that human review is crucial. No strong statistically rele-
vant correlation between geometric and dosimetric met-
rics was observed, suggesting that both types of analysis 
should be included in the evaluation of automatic organ 
segmentation in the scope of radiotherapy.
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