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Abstract 

Purpose: High‑quality radiotherapy (RT) planning for children and young adults with primary brain tumours is essen‑
tial to minimize the risk of late treatment effects. The feasibility of using automated machine‑learning (ML) to aid RT 
planning in this population has not previously been studied.

Methods and materials: We developed a ML model that identifies learned relationships between image features 
and expected dose in a training set of 95 patients with a primary brain tumour treated with focal radiotherapy to a 
dose of 54 Gy in 30 fractions. This ML method was then used to create predicted dose distributions for 15 previously‑
treated brain tumour patients across two institutions, as a testing set. Dosimetry to target volumes and organs‑at‑risk 
(OARs) were compared between the clinically‑delivered (human‑generated) plans versus the ML plans.

Results: The ML method was able to create deliverable plans in all 15 patients in the testing set. All ML plans were 
generated within 30 min of initiating planning. Planning target volume coverage with 95% of the prescription dose 
was attained in all plans. OAR doses were similar across most structures evaluated; mean doses to brain and left 
temporal lobe were lower in ML plans than manual plans (mean difference to left temporal, – 2.3 Gy, p = 0.006; mean 
differences to brain, – 1.3 Gy, p = 0.017), whereas mean doses to right cochlea and lenses were higher in ML plans 
(+ 1.6–2.2 Gy, p < 0.05 for each).

Conclusions: Use of an automated ML method to aid RT planning for children and young adults with primary brain 
tumours is dosimetrically feasible and can be successfully used to create high‑quality 54 Gy RT plans. Further evalua‑
tion after clinical implementation is planned.
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Introduction
Radiation therapy is an essential treatment for children 
and adults with brain tumours, but it can lead to impor-
tant side effects including neurocognitive change, hear-
ing loss and endocrinopathies. Designing RT treatments 

that maximize the likelihood of cure while minimizing 
side effects is crucial [1]. Although RT planning software 
has improved significantly in recent decades, the creation 
of RT plans for most tumour types is still dependent on 
a semi-manual iterative process of optimizing param-
eters to achieve an acceptable, inverse-planned RT dose 
distribution. This manual process of trial-and-error is 
operator-dependent and labor intensive, and while the 
resulting radiation dose distributions may meet specified 
clinical goals, they are not necessarily the optimal radia-
tion plan for an individual patient. Automated planning 
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is a method to overcome these limitations, and has been 
previously studied in patients with cervical cancer [2], 
prostate cancer [3], breast cancer [4], and lung cancer [5]. 
To our knowledge, no prior publication has described the 
successful use of automated planning to optimize radia-
tion treatment of primary brain tumours.

In this study, we developed and evaluated an automated 
machine-learning RT planning method for children and 
adults with brain tumours. Deliverable ML-generated 
treatment plans were dosimetrically compared with 
human-generated plans that were delivered clinically.

Materials and methods
We performed an in silico dosimetry study to evaluate 
feasibility of ML planning for brain tumours, and the 
quality of the resulting RT plans. The study was approved 
by the relevant institutional Research Ethics Boards.

Details of ML model development have been described 
previously [6–8]. In brief, an atlas of clinically-treated 
photon plans was first created. Within the ML pipeline, 
contoured structures and computed tomography (CT) 
imaging features were extracted by the software. Imag-
ing features describe the appearance and texture of the 
imaging dataset on a per-voxel basis, and account for dif-
ferences in patient anatomical geometry (see Additional 
file 1: supplementary materials). The first ML component 
used atlas regression forests (ARFs) to associate image 
features with observed radiation dose. This process was 
repeated over each voxel for the entire CT dataset, on 
every case in the training dataset. A second component 
of the ML step was designed to ensure the accuracy of 

dose prediction by considering contextual information to 
the dose-per-voxel. Since each voxel’s dose is not inde-
pendent from the dose to adjacent voxels, the contex-
tual dose links a voxel’s dose to that of nearby voxels. A 
conditional random field (CRF) model was used to com-
bine these individual voxel doses and generate predicted 
dose distributions that were spatially accurate and real-
istic over anatomic regions of interest. The trained ML 
model predicted the dose to targets and normal tissues 
for a novel patient case based on the learned relation-
ships between imaging features and per-voxel dose by 
automatically identifying anatomically similar training 
cases. The predicted dose plans are then converted into 
clinically deliverable single-arc volumetric arc therapy 
(VMAT) plans using an inverse-planning optimization 
algorithm that minimizes the difference between the 
predicted and final dose, while ensuring technical beam 
delivery constraints are met, to create a deliverable plan.

We applied this approach to a training set of 95 con-
secutive brain tumour patients treated from July 2016 
to August 2020 at a single institution (Fig.  1). Patients 
receiving focal treatment (no craniospinal radiotherapy 
component) to 54  Gy using VMAT for an intracranial 
brain tumour were eligible for inclusion. RT plans met 
evaluation criteria listed in Table 2.

Fifteen novel brain tumour patients clinically treated 
with 54 Gy in 30 fractions from July 2018 to November 
2020 at two institutions were then re-planned with this 
ML model as a testing set (Fig. 1). These patients’ novel 
planning CT images with target and organs-at-risk 
contours were input into the ML model for ML-plan 

Fig. 1 Flow diagram of study data and planning workflow
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generation. Dosimetry to both target volumes and OARs 
was reviewed and compared with the manual, human-
generated plans that were delivered clinically. Target cov-
erage, maximum doses to brainstem, optic chiasm, optic 
nerves, spinal cord, and mean doses to brain, hypothala-
mus, pituitary, cochlea, hippocampi, temporal lobes and 
parotids were evaluated and compared between ML and 
manual plans using paired t-tests.

Results
Details of our patient cohort are shown in Table  1. ML 
plans were successfully created for all 15 patients in the 
testing set. An example case is shown in Fig. 2, with rep-
resentative manually-created clinical plan and the clini-
cally-deliverable ML plan. All ML plans were generated 
within 30 min of initiating planning.

To evaluate ML plans in the testing set and compare 
with the manual plans, we first applied pre-specified 
plan evaluation criteria to both. The results of this com-
parison are shown in Table 2. Similar target coverage was 
observed in both ML and manual plans; at least 95% of 
PTV received > 51.3  Gy (95% of prescription) in all ML 
and manual plans. Maximum chiasm dose was < 54  Gy 
in 14 ML vs 15 manual plans; maximum brainstem dose 
was < 54 Gy in all 15 ML vs 13 manual plans.

We subsequently compared quantitative dose metrics 
to OARs, shown in Table  3. Maximum doses to brain-
stem, chiasm, each eye and optic nerve, spinal cord, and 
mean doses to right temporal lobe, left cochlea, each hip-
pocampus, hypothalamus, parotid and pituitary were 

not statistically different between ML and manual plans 
(p > 0.05 for each). The maximum in-patient dose was 
not statistically different between ML and manual plans. 
Mean doses to brain and left temporal lobe were lower 
in ML plans than manual plans (mean difference to left 
temporal, – 2.3 Gy, p = 0.006; mean differences to brain, 
– 1.3  Gy, p = 0.017), whereas mean doses to right coch-
lea and lenses were higher in ML plans (+ 1.6–2.2  Gy, 
p < 0.05 for each).

Discussion
To our knowledge, this is the first study to demonstrate 
the feasibility of using ML planning to create high quality, 
clinically deliverable RT plans for patients with primary 
brain tumours. ML plans were comparable with manual 
plans with respect to their ability to meet a priori plan 
evaluation criteria, including target coverage. Quantita-
tive dosimetry to OARs was similar in both approaches, 
indicating that ML plans would be suitable to use and 
implement for clinical treatments.

Previous studies have demonstrated promising results 
using fully automated RT planning for sites with lim-
ited inter-patient variation in anatomy such as prostate, 
breast and lung cancer. McIntosh et  al., demonstrated 
the feasibility of the voxel-based approach used here to 
create deliverable prostate cancer RT plans [7, 9] and 
Duren-Koopman et  al. developed personalized, scripted 
tangential and arc-based RT planning for patients requir-
ing breast plus locoregional lymph nodes [4]. Similarly, 
Creemers et  al. demonstrate excellent dosimetric char-
acteristics of automated VMAT plans in non-small cell 
lung cancer, as compared with manual plans [10]. Among 
primary brain tumours, although the intracranial con-
tents are similar between patients, the variation in brain 
tumour configuration, and the variable impact of tumor 
and surgery on normal CNS anatomy poses unique 
challenges that the ML method was able to overcome. 
This contrasts with prior studies of automated plan-
ning, which have primarily been applied to anatomically 
homogeneous targets.

When creating ML models, using high-quality RT 
plans in the training model is critical so that ML out-
put is similarly high-quality [11]. In the present study, 
we applied strict dosimetric criteria for inclusion in the 
training set to ensure high-quality plans were included in 
the ML model. Our study is limited to use of homogene-
ous dose prescriptions (54 Gy); different training sets and 
models are likely needed for use with two-phase plans or 
other prescriptions because of differing dose-constraints 
on OARs. Clinical implementation to ensure contin-
ued feasibility is required; this process is ongoing at our 
institution.

Table 1 Patient characteristics in training and testing set

*54 Gy treatment for recurrence

Characteristics Training set (n = 95) Testing set (n = 15)

Age at RT, median (range) 24 (2, 40) 35 (13, 71)

Pediatric, age < 18 (%) 38% 13%

Female (%) 49% 33%

Diagnosis

Glioma 62 9

Meningioma 6 3

Ependymoma 11 2

Medulloblastoma* 2 –

Craniopharyngioma 3 –

Others 11 1

Tumor location

Supratentorial 45 10

Infratentorial 50 5

Tumor laterality

Midline 45 5

Lateralized—left 18 7

Lateralized—right 32 3
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Fig. 2 Manually‑created clinical plan on top row and final ML plan bottom row respectively. Axial, sagittal and coronal views are shown from left to 
right. Red, green and blue lines represent the gross tumor, clinical target and planning target volumes, respectively

Table 2 Evaluation criteria applied to manual and ML plans

*Dx represents the dose to x% of the region of interest. Dmax represents the point max dose to the region of interest (i.e. a single voxel)

Regions of interest n Criterion* Criterion met Outcome

Manual plans ML plans

GTVp 15 D99 > 5130 cGy 14 14 Similar

CTVp_5400 15 D98 > 5130 cGy 15 15 Similar

PTVp_5400 15 D95 > 5130 cGy 15 15 Similar

PTVp_5400 15 Dmax < 5670 cGy 14 14 Similar

Brainstem 15 Dmax < 5400 cGy 13 15 ML better

Chiasm 15 Dmax < 5400 cGy 15 14 Manual better

External 15 Dmax < 5670 cGy 14 14 Similar

Eye_L 15 Dmax < 4500 cGy 15 15 Similar

Eye_R 15 Dmax < 4500 cGy 15 15 Similar

Lens_L 15 Dmax < 750 cGy 15 11 Manual better

Lens_R 15 Dmax < 750 cGy 15 13 Manual better

OpticNrv_L 15 Dmax < 5400 cGy 15 15 Similar

OpticNrv_R 15 Dmax < 5400 cGy 15 15 Similar

SpinalCord 15 Dmax < 5400 cGy 15 15 Similar
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The potential of ML model lies in its the ability to 
reliably create high-quality treatment plans that were 
not dependent on the training or skill of the medi-
cal dosimetrist, as well as rapid creation of reliable RT 
plans. This has important potential to improve access 
to high quality RT in small practices or middle-income 
countries where planning expertise may be limited [12]. 
Further, rapid RT planning is especially important for 
patients requiring urgent commencement of RT, such 
as in children with symptomatic brainstem glioma.

Conclusions
In conclusion, we developed and evaluated an auto-
mated machine-learning RT planning method for 
pediatric and adult brain tumour patients, and dem-
onstrated the feasibility of rapidly generating clini-
cally-deliverable ML plans that display consistent plan 
quality, as well as similar target coverage and OAR 
sparing as compared to human-generated plans used 
clinically. Clinical implementation of this ML treatment 
planning system is ongoing.
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Table 3 Summary of dose differences to OARs between ML and manual plans

Bolded text represents p value < 0.05

*Dose difference of an ROI is the dose in the ML plan minus dose in manual plan. Negative values indicate lower doses in the ML plan (better OAR sparing with ML 
plan)

Organs at risk n Criterion Mean values (cGy) Dose differences*, ML – manual (cGy)

ML Manual Mean p value Median Maximum Minimum

Brainstem 15 Dmax < 5400 cGy 3820 3857 − 37 0.6984 8 601 − 1140

Chiasm 15 Dmax < 5400 cGy 3075 3267 − 192 0.3458 49 747 − 2051

External 15 Dmax < 5670 cGy 5599 5572 27 0.4019 45 220 − 238

Eye_L 15 Dmax < 4500 cGy 1417 1430 − 13 0.8923 26 549 − 614

Eye_R 15 Dmax < 4500 cGy 1211 1182 29 0.8388 56 988 − 927

Lens_L 15 Dmax < 750 cGy 586 369 217 0.0188 109 766 − 139

Lens_R 15 Dmax < 750 cGy 532 356 176 0.0204 177 814 − 218

OpticNrv_L 15 Dmax < 5400 cGy 2772 2701 71 0.5836 11 1130 − 890

OpticNrv_R 15 Dmax < 5400 cGy 2358 2342 16 0.8765 20 702 − 771

SpinalCord 15 Dmax < 5400 cGy 1271 1411 − 140 0.2440 − 9 104 − 1723

Brain 15 Dmean 1476 1603 − 127 0.0172 − 62 96 − 615

Brain_Temporal_L 15 Dmean 1758 1984 − 226 0.0056 − 155 69 − 854

Brain_Temporal_R 15 Dmean 1324 1389 − 65 0.3871 − 3 426 − 662

Cochlea_L 15 Dmean 1844 1555 289 0.2919 20 2850 − 2102

Cochlea_R 15 Dmean 1579 1417 162 0.0276 31 703 − 77

Hippocampus_L 14 Dmean 2005 2225 − 219 0.1441 − 90.5 642 − 1302

Hippocampus_R 14 Dmean 1760 1729 31 0.8081 11.5 781 − 749

Hypothalamus 15 Dmean 2214 2380 − 166 0.3638 − 121 804 − 1753

Parotid_L 15 Dmean 145 273 − 128 0.1303 − 11 33 − 1177

Parotid_R 15 Dmean 145 318 − 173 0.1051 − 14 18 − 1499

Pituitary 15 Dmean 2392 2311 81 0.5159 40 846 − 1231
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