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Abstract 

Objective: The purpose of this study was to develop a model using dose volume histogram (DVH) and dosiomic 
features to predict the risk of radiation pneumonitis (RP) in the treatment of esophageal cancer with radiation therapy 
and to compare the performance of DVH and dosiomic features after adjustment for the effect of fractionation by cor-
recting the dose to the equivalent dose in 2 Gy (EQD2).

Materials and methods: DVH features and dosiomic features were extracted from the 3D dose distribution of 101 
esophageal cancer patients. The features were extracted with and without correction to EQD2. A predictive model 
was trained to predict RP grade ≥ 1 by logistic regression with L1 norm regularization. The models were then evalu-
ated by the areas under the receiver operating characteristic curves (AUCs).

Result: The AUCs of both DVH-based models with and without correction of the dose to EQD2 were 0.66 and 0.66, 
respectively. Both dosiomic-based models with correction of the dose to EQD2 (AUC = 0.70) and without correction 
of the dose to EQD2 (AUC = 0.71) showed significant improvement in performance when compared to both DVH-
based models. There were no significant differences in the performance of the model by correcting the dose to EQD2.

Conclusion: Dosiomic features can improve the performance of the predictive model for RP compared with that 
obtained with the DVH-based model.
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Introduction
Esophageal cancer is a thoracic cancer for which radio-
therapy (RT) is an effective treatment [1]. Radiation 
pneumonitis (RP) is one of the side effects of thoracic 
radiation therapy, occurring in patients whose lungs have 
been irradiated during treatments for malignancy. RP 
usually develops in the first 6  months after irradiation. 
Depending on its severity, the symptoms of RP include 

dyspnea, nonproductive cough and hypoxemia requir-
ing supplemental oxygen. Careful consideration of dose 
to the lung must be made to limit the occurence of RP 
which affect radiation planning.

Machine learning (ML) models can be developed as 
normal tissue complication probability (NTCP) mod-
els to predict toxicity arising from radiation. Dosimet-
ric factors extracted from DVH and patient factors such 
as comorbidity, age, and history of chemotherapy are 
commonly used as features in predictive models for RP 
after treatment [2–4]. Recently, texture analysis (TA) 
approaches, such as radiomics, have emerged that can 
extract latent information from medical images and 
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improve the performance of predictive models in the 
field of radiation oncology. TA has also been applied to 
dose distribution in radiotherapy, referred to as dosiom-
ics. Several researchers have reported improved toxicity 
prediction performance after radiation therapy by dosi-
omics [5–7], including for RP [8–10]. However, studies 
on dosiomics as features for the prediction of RP were 
performed in lung cancer patients. Due to differences in 
dose distribution to the lung and other confounding fac-
tors in lung cancer that are associated with the risk of RP, 
such as tumor location [11] and changes in gross tumor 
volume (GTV) during treatment, a model developed for 
patients lung cancer may not be applicable to esophageal 
cancer patients.

Fraction size is an important factor in radiation ther-
apy. The impact of fraction size can be illustrated using 
the well-known linear quadratic (LQ) model. Fraction 
size has been shown to be a significant factor of RP [12–
14]. However, previous studies using dosiomic features 
for the prediction of RP did not consider the effect of 
fraction size.

The purpose of this study was to develop a model with 
DVH and dosiomic features to predict the risk of RP in 
esophageal cancer patients treated with radiation therapy 
and to compare the performance of DVH and dosiomic 
features with or without consideration of the fraction size 
effect by correcting the dose distribution to the equiva-
lent dose in 2 Gy (EQD2).

Material and methods
Data
The 3D dose distribution of all delivered fractions in 333 
esophageal cancer patients > 15 years of age treated with 
radiation therapy from 2011 to 2019 was extracted from 
the Varian Eclipse treatment planning system (TPS) at 
the Ramathibodi Hospital at Mahidol University. All dose 
distributions were calculated by Analytical Anisotropic 
Algorithm (AAA) on Eclipse TPS using free-breathing 
CT image. This retrospective study was approved by 
the ethical committee of the Ramathibodi Hospital at 
Mahidol University. The esophageal cancer patients 
included in this study were all locally advanced esopha-
geal cancer treated with radiation except for metastatic 
disease. Patients with a follow-up time under 1  year, a 
previous history of thoracic radiation therapy, a diag-
nosis of interstitial lung disease, absence of treatment 
data and lung metastasis within 1  year were excluded 
from the study, leaving a total of 101 patients remaining 
for the analysis. Radiation therapy was delivered with 
3D conformal, intensity-modulated radiation therapy 
(IMRT), volumetric-modulated arc therapy (VMAT) and 
combined techniques with free breathing. Image guided 
radiation therapy was done by cone beam CT for the 

first three fraction and weekly after with daily kilovoltage 
imaging. The prescription dose ranged from 30 to 60 Gy 
with 1.8–3  Gy per fraction. A summary of the clinical 
and treatment characteristics is provided in Table 1 and 
Additional file  1: Table  S3. The code for the extraction 
of the treatment plan from Varian Eclipse TPS based on 
the Eclipse Scripting Application Programming Inter-
face (ESAPI) is available at https:// github. com/ 44REAM/ 
Expor tFrac tionD ose. git.

RP was reviewed and graded by radiation oncologists 
based on the National Cancer Institute Common Termi-
nology Criteria for Adverse Events version 5.0 (CTCAE 
v5.0). RP requiring intubation was deemed to be grade 4. 

Table 1 Patient clinical and treatment characteristics

Clinical and treatment characteristic Median (range)/n (%)

Age 61 (26–93)

Sex

 Male 89 (88%)

 Female 12 (12%)

Smoking history

 No 29 (29%)

 Active smoking 25 (25%)

 Quit smoking < 10 years 33 (33%)

 Quit smoking ≥ 10 years 14 (13%)

Stage

 1 4 (4%)

 2 3 (3%)

 3 71 (70%)

 4 23 (23%)

Treatment setting

 CCRT 95 (94%)

 RT 6 (6%)

RT aim

 Preoperative 47 (47%)

 Postoperative (adjuvant) 1 (1%)

 Definitive 49 (48%)

 Palliative 4 (4%)

Prescription dose 50.4 (30.0–60.0)

Prescription dose per fraction 1.8 (1.8–3.0)

RT modality

 3D conformal RT 78 (77%)

 IMRT/VMAT 9 (9%)

 Combine 14 (14%)

RP grade

 0 38 (38%)

 1 58 (57%)

 2 5 (5%)

 3 0 (0%)

 4 0 (0%)

https://github.com/44REAM/ExportFractionDose.git
https://github.com/44REAM/ExportFractionDose.git
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RP requiring oxygen and steroids was deemed to be grade 
3. RP requiring steroids or with symptoms that interfered 
with daily activities was deemed to be grade 2. RP with 
symptoms or radiographic features without the need for 
steroids was deemed to be grade 1. RP grades equal to or 
greater than 1 are labeled positive, and grade 0 is labeled 
negative for prediction.

Equivalent dose in 2 Gy fractions
Dose distributions were extracted in fractions. The dose 
distribution of fraction i is referred to as di (dose per 
fraction per voxel). The equivalent dose in the 2 Gy frac-
tion (EQD2) was calculated as follows: [15]

The value of the α/β ratio in the equation was assumed 
to be 3 [16–21]. The equation above is suitable for our 
dataset because of its compatibility with different doses 
per fraction per voxel ( di ). Although we use a similar pre-
scription fraction size (1.8–3 Gy per fraction), the actual 
dose the patient received in different locations and frac-
tions might be different. For example, the first fraction 
may have been delivered by an antero-posterior beam, 
and the second fraction may have been delivered by 2 
lateral beams, resulting in different doses per fraction for 
different voxels. The distribution of the number of beams 
were showed in Additional file 1: Tables S4, S5 and Figs. 
S9, S10.

Features
All dose distributions were resampled to 
1.5 × 1.5 × 1.5   mm3. DVH features were mean lung dose 
(MLD), generalized equivalent uniform dose (gEUD), the 
relative volume of the lung that received a dose greater 
than x Gy, Vx, ranging from V5 to V70 in 5  Gy steps. 
Dosiomic features were extracted from the dose distribu-
tion using the Pyradiomics library in Python [22]. gEUD 

was calculate by gEUD =

(

∑

i

D
1

n
i

)n

 . Parameter n was 

set to 0.99 as previously described [8, 23]. Dosiomic fea-
tures included in this study were based on the following: 
first-order statistics (18 features) and texture features (75 
features). Prior to extraction of texture features, gray-
level intensity was binned to the 100 Gy level with a fixed 
bin size of 1 Gy. Texture features were based on the gray 
level cooccurrence matrix (GLCM) (24 features), gray 
level run length matrix (GLRLM) (16 features), gray level 
size zone matrix (GLSZM) (16 features), neighborhood 
gray tone difference matrix (NGTDM) (5 features) and 
gray level dependence matrix (GLDM) (14 features). Both 
DVH and dosiomics features were extracted from lung 

EQD2 =

∑

i

di + d2i /(α/β)

1+ 2/(α/β)

region of interest (ROIs) from either dose distribution 
with or without correction to EQD2. All features were 
normalized to the range of 0–1. In summary, 30 DVH 
features and 186 dosiomic features were extracted from 
each patient. All analyzed features were show in Addi-
tional file 1: Table S1.

Model building
Models were built from feature types as follows: (a) model 
with DVH features (DVH), (b) model with DVH features 
corrected to EQD2 dose distribution (DVHEQD2), (c) 
model with dosiomic features (DO), and (d) model with 
dosiomic features corrected to EQD2 dose distribution 
(DOEQD2). First, redundant features were removed only 
from the dosiomic-based features by Spearman’s rank 
correlation test to prevent overfitting, which removed 
other features with high correlation, leaving only one 
feature [8, 9, 24]. A high correlation coefficient (CC) in 
Spearman’s rank correlation test was defined as CC > 0.8. 
Before insertion into the model, the data were randomly 
separated into 1000 instances of the training set (80%) 
and test set (20%). The minority class in the training set 
was randomly oversampled with replacement to equalize 
the two classes. Multivariate logistic regression with L1 
norm regularization (LASSO) was used [25–27]. LASSO 
was performed to prevent overfitting and can also be 
used as embedded feature selection in the logistic regres-
sion model by shrinking the coefficient of unimportant 
features to zero. The regularized strength of the L1 norm 
was determined by 20 rounds of inner loop fivefold cross 
validation to maximize the average area under the curve 
(AUC) of the receiver operating characteristic curve 
(ROC) on the training set using grid search. An overview 
of the process is demonstrated in Fig.  1. Further details 
regarding the model building and hyperparameter tuning 
are presented in Additional file 1: Supplementary S1.

Evaluation
The mean, standard deviation (SD) and 10th–90th per-
centile of AUC in the test set of 1000 models in each 
group were calculated. A Z-test was used to test the sta-
tistical significance of the AUC between the 4 models. 
Statistical analyses were performed using the Python 
and SciPy packages [28]. A p value < 0.05 was considered 
significant.

Results
The distribution of RP grade was showed in Additional 
file  1: Table  S3. Due to the RT modality can affect the 
texture of dose distribution, the association between RT 
modality and RP for RP grade 0 and grade ≥ 1 was test 
by cri-square. The result showed that there are no asso-
ciation between RT modality and RP (p value 0.89). This 
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result was consistent to previous study which no benefits 
of IMRT over 3D conformal technique in reduction of RP 
[29].

In the model building process, dosiomic features were 
progressively eliminated due to the high correlation 
among features. The remaining number of features were 
20 and 24 in the DO and DOEQD2, respectively, and 
these features were used to the train logistic regression 
model (Additional file 1: Table S2).

The mean of the ROC curve is provided in Addi-
tional file  1: Fig. S1. The AUCs of the models with 
DVH, DVHEQD2, DO and DOEQD2 were 0.66 ± 0.11, 
0.66 ± 0.11, 0.70 ± 0.11 and 0.71 ± 0.11, respectively 
(Table 2). The data showed that there was no significant 

difference observed in the performance when correcting 
dose distribution to EQD2 in either model (DVH model 
and DVHEQD2 model (p value = 0.56), DO model and 
DOEQD2 model (p value = 0.73)). Both dosiomic models 
performed better than the dosimetric-based models (p 
value < 0.01).

Features that were selected in more than 50% of all 
groups are shown in Fig. 2. The median odds ratios (ORs) 
with 10th–90th ORs of the features that were selected in 
more than 50% of the groups are shown in Table 2. Fea-
tures that were selected in more than 50% in the DVH 
and DVHEQD2 groups were V40 and V45 and V35 and 
V40, respectively. Busyness from NTGDM and the 90th 
percentile were selected in the dosiomic-based group. 

Fig. 1 Overview of the process of this study. DVH dose volume histogram features, DO dosiomic features, DVHEQD2 DVH features with dose 
corrected to EQD2, DOEQD2 dosiomic feature with dose corrected to EQD2

Table 2 Logistic regression model results

Features corresponding to the model showed only features that were selected more than 50% of the time. OR was adjusted to the actual value of features (not 
normalized value)
a Reported normalized value due to very low OR

OR 10th, 90th OR AUC 10th, 90th AUC 

DVH models 0.66 ± 1.1 0.52, 0.80

 V40 5.58 0, 10.77

 V45 2.16 0, 8.89

DVHEQD2 models 0.66 ± 0.11 0.51, 0.80

 V40 4.90 0, 12.10

 V35 1.34 0, 9.30

DO models 0.70 ± 0.11 0.55, 0.85

 NTGDM busyness − 0.07 − 0.10, − 0.04

 90 percentile 0.01 0, 0.02

 GLRLM LongRunGrayLevelEmphasis 0.51a 0, 2.05a

DOEQD2 models 0.71 ± 0.11 0.57, 0.84

 NTGDM busyness − 0.07 − 0.11, − 0.04

 90 percentile 0.02 0, 0.11

 GLSZM LowGrayLevelZoneEmphasis 25.96 − 117.66, 0
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Other features that were selected for more than 50% in 
DO were LongRunHighGrayLevelEmphasis (LRHGLE) 
from GLRLM and LowGrayLevelZoneEmphasis (LGLZE) 
from GLSZM in DOEQD2. We further investigated the 
correlation between features with and without correction 
to EQD2 of the selected features. The correlations among 
the most selected features in DVH, DVHEQD2, DO and 
DOEQD2 are shown in Additional file 1: Figs. S2, S3, S4, 
S5, S6, S7 and S8. Most of the selected features had a high 
CC (CC ≥ 0.9) between features with and without correc-
tion to EQD2. Only LGLZE had a CC of 0.73.

Discussion
To the best of our knowledge, our study is the first in 
dosiomics to analyze radiation delivered per fraction 
instead of the sum of all fractions and to investigate the 
effect of EQD2 on DVH and dosiomic features. In other 
studies, the dose per fraction per voxel of the predictive 
model of IMRT, VMAT and stereotactic body radiation 
therapy (SBRT) was usually the same for all fractions. 
If the fraction size is the same for all fractions, the total 

dose can simply be divided by the number of fractions 
to obtain the fraction size per voxel. However, our data 
include 3D conformal techniques that can involve several 
beam arrangements and treatment phases for different 
fractions depending on the clinical judgment of the radi-
ation oncologist.

In the DVH and DVHEQD2 models, the most selected 
features were V35, V40 and V45. The difference in 
selected features between DVH and DVHEQD2 can be 
explained by correction of the dose to EQD2, resulting in 
a lower dose. The overall values of the features are shown 
in Additional file  1: Figs. S2, S3 and S4. Previous stud-
ies usually indicate the importance of V20 [30–34] and 
MLD [30, 32, 33, 35–37] as predictors of RP. However, 
our study revealed that more in than 50% of the reads, 
V35, V40 and V45 (Fig.  2) were selected. The results of 
a previous study of patients treated with CCRT with the 
3D conformal technique suggested that V30 is a predic-
tive factor for RP grade ≥ 2 [31] in lung cancer patients. 
Although V30 was not among the most selected fea-
tures in our study, this might be because the grade of 

Fig. 2 Most selected features from 1000 models. Only features that were selected more than 500 times are shown (50%)
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RP was different, and in [31], Vx other than V20 and 
V30 were not investigated. Another study also revealed 
V40 to be an important factor, but the end point was 
severe RP (RP ≥ 3) [33] in lung cancer patients. In stud-
ies of esophageal cancer patients, V30 has been shown 
to be significantly correlated with acute RP (RP occurs 
within 3 months post radiation therapy) with 3D confor-
mal techniques [34]. These researchers investigated V50 
but did not find a significant correlation with RP; how-
ever, V35, V40 and V45 were not investigated. In another 
study of esophageal cancer patients treated with CCRT 
by 3D conformal technique, V5–V60 were analyzed and 
none of these factors were found to be associated with RP 
grade ≥ 2 [38].

In our study, the two most selected dosiomic features 
in the DO and DOEQD2 groups were Busyness in the 
NTGDM and the 90th percentile of dose (Fig.  2). The 
third most selected feature in DO and DOEQD2 was dif-
ferent (LRHGLE in DO and LGLZE in DOEQD2). This 
was because in DOEQD2, LRHGLE was eliminated due 
to its high correlation with other features, while LRHGLE 
in DO was not eliminated (Additional file  1: Table  S1). 
Two prior studies in dosiomic features and RP reported 
the most important dosiomic features in GLCM group. 
Contrast from GLCM was found to be the most predic-
tive feature of RP grade ≥ 2 in non-small cell lung can-
cer (NSCLC) treated with VMAT [8]. Correlation with 
GLCM extracted from wavelet transformation of dose 
imaging in lung regions with a dose greater than 5  Gy 
was found to be a significant feature in a predictive model 
of RP grade ≥ 2 in early-stage NSCLC treated with SBRT 
[9]. Another study in dosiomics were analyzed reported 
the use of a combination of 8 features in the GLSZM 
group and 1 feature in the GLCM group, which resulted 
in the best performance for the prediction of late RP (RP 
grade ≥ 2 developed 6  months after the start of RT) in 
lung cancer treated with VMAT. However, we did not 
find any feature that was selected for more than 50% 
in the GLCM group and found one only feature in the 
GLSZM group. These results are different from those of 
previous studies (Fig. 2). This might be due to the differ-
ence in the nature of the dose distribution and disease 
of the patients studied, since in our dataset, most of the 
patients were treated by the 3D conformal technique, and 
the study was performed in esophageal cancer patients.

The most selected feature in the dosiomic-based model 
was busyness. Busyness indicates the spatial frequency 
of intensity changes [39]. In dose distribution, busyness 
can be interpreted as an intensity change in radiation 
dose. From our result, busyness is negatively correlated 
with RP. Thus, a low spatial frequency change in radia-
tion dose intensity is correlated with RP. The second most 
selected feature in the dosiomic-based model is the 90th 

percentile. By estimating parameters from the Lyman–
Kutcher–Burman (LKB) model, the lungs have usually 
been interpreted as parallel organs [13, 23]. In parallel 
organs, the 90th percentile of the dose (one “hot” spot) 
in the dose distribution might not be a good feature. 
However, in this study, we predicted RP grade 1, which 
may manifest only in the form of local changes in radio-
graphic images. Therefore, the lungs can be viewed as a 
series organ in this case.

Previous studies demonstrated that the use of dosi-
omic features can improve the performance of predic-
tive models in RP [8–10]. In our study, dosiomic features 
also showed significant improvement from dosimetric 
features. We also further investigated the performance 
of features with and without correction to EQD2. The 
results showed that no significant improvement from 
DVH to DVHEQD2 and DO to DOEQD2 could be 
found. Previous research studies of biological dose accu-
mulation and conventional accumulation dose showed 
that the difference between biological dose accumulation 
and conventional accumulation dose increases depend-
ing on daily variation of dose in theoretical prediction 
[15]. Their results indicated that the biological dose 
would be unlikely to affect the dose–response model, 
which was based on DVH in standard fractionation. 
In other words, this indicates there is no impact on the 
outcome whether we accumulate the dose by biological 
effect or not. Their results might explain why our DVH 
and DVHEQD2 models were not different. For dosiomic 
features, our results did not show a significant differ-
ence in performance between DO and DOEQD2. How-
ever, the results showed differences in the most selected 
features (Fig.  2). By looking at the CC of the selected 
features between DO and DOEQD2, some dosiomic 
features (LGLZE) had lower a CC. This may lead to dif-
ferent selected features between DO and DOEQD2. 
Although we did not find any difference in performance 
between the DO and DOEQD2 models, we recommend 
correction of dose to biological dose due to potential dif-
ferences in the selected features. Since the cell survival 
from the LQ model is nonlinear, correcting the dose to 
EQD2 (or other biological doses) could improve valid-
ity over using dose with linear summation. As previous 
studies reported a correlation between fraction size and 
RP [12–14], we can extract more information about dose 
distribution for predicting RP if we correct the dose dis-
tribution first.

We believe that our data reflect the population of 
esophageal cancer patients since patient character-
istic (age, sex and tumor stage) were similar to other 
study of esophageal cancer [27, 29, 37]. The incident of 
RP grade ≥ 2 in esophageal cancer was report by sys-
tematic review about 6.6% which similar to our study 
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(5%), although information for grade 1 RP were lacking. 
Patients with history of interstitial lung disease (ILD) in 
our dataset were excluded because it was difficult to dif-
ferentiate between ILD and radiation pneumonitis (RP). 
The treatment of ILD and RP are also similar (prescrip-
tion of steroid) which can lead to misclassification. The 
majority of patient in our dataset were treated with 3D 
conformal technique which may limit generalization to 
other RT technique (e.g. IMRT). For patient with dose 
distribution and consistent number of beams throughout 
all fraction, the result of the predictive model should not 
much be difference since the performance of dosiomic 
model were the same with or without correction of dose 
distribution to EQD2.

The limitation of this study was the paucity of RP events 
requiring steroids (5 patients), which corresponded to RP 
grade ≥ 2. Therefore, the prediction in this study was per-
formed primarily on RP grade ≥ 1, which might limit its 
usefulness in actual clinical practice, though the model of 
RP grade ≥ 1 can be used for ruling out RP grade ≥ 2 as 
well which could aid in some clinical decision. In a pre-
vious study, it was suggested that the impact of biologi-
cal dose on the DVH parameter may be higher with the 
hypofraction regimen [15]. The second limitation was 
that in our study, most data were of standard fraction 
size. The effect of biological dose with the hypofraction 
regimen on dosiomic features should be investigated.

Conclusion
In this study, we demonstrated the potential of dosiomic 
features that can improve the performance of a predic-
tive model of radiation pneumonitis grade ≥ 1 in esopha-
geal cancer patients in comparison with that obtained 
with a DVH-based model. We also confirmed the benefit 
of dosiomic features in the prediction of RP in 3D con-
formal RT. Correction of dose per fraction to EQD2 did 
not improve the performance of the predictive model in 
standard fractionation. However, we recommend cor-
recting the dose to the biological dose for dose-related 
analysis. Although this model may not be useful in clini-
cal situations due to the limitation of training data, the 
insight gained may prove useful in further endeavors 
to develop a predictive model of RP for use in radiation 
treatment planning.
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