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Abstract 

Objective: To develop high-quality synthetic CT (sCT) generation method from low-dose cone-beam CT (CBCT) 
images by using attention-guided generative adversarial networks (AGGAN) and apply these images to dose calcula-
tions in radiotherapy.

Methods: The CBCT/planning CT images of 170 patients undergoing thoracic radiotherapy were used for training 
and testing. The CBCT images were scanned under a fast protocol with 50% less clinical projection frames compared 
with standard chest M20 protocol. Training with aligned paired images was performed using conditional adversarial 
networks (so-called pix2pix), and training with unpaired images was carried out with cycle-consistent adversarial 
networks (cycleGAN) and AGGAN, through which sCT images were generated. The image quality and Hounsfield 
unit (HU) value of the sCT images generated by the three neural networks were compared. The treatment plan was 
designed on CT and copied to sCT images to calculated dose distribution.

Results: The image quality of sCT images by all the three methods are significantly improved compared with 
original CBCT images. The AGGAN achieves the best image quality in the testing patients with the smallest mean 
absolute error (MAE, 43.5 ± 6.69), largest structural similarity (SSIM, 93.7 ± 3.88) and peak signal-to-noise ratio (PSNR, 
29.5 ± 2.36). The sCT images generated by all the three methods showed superior dose calculation accuracy with 
higher gamma passing rates compared with original CBCT image. The AGGAN offered the highest gamma passing 
rates (91.4 ± 3.26) under the strictest criteria of 1 mm/1% compared with other methods. In the phantom study, the 
sCT images generated by AGGAN demonstrated the best image quality and the highest dose calculation accuracy.

Conclusions: High-quality sCT images were generated from low-dose thoracic CBCT images by using the proposed 
AGGAN through unpaired CBCT and CT images. The dose distribution could be calculated accurately based on sCT 
images in radiotherapy.
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Introduction
Cone-beam CT (CBCT) images are widely used in image-
guided radiotherapy (IGRT) [1–3], and they are impor-
tant for decreasing the positioning error and increasing 
the accuracy of treatments for patients with cancer. 
Compared with images from traditional fan-beam CT, 
CBCT images suffer from low contrast and artifacts due 

Open Access

*Correspondence:  nxy@njmu.edu.cn
†Gao Liugang and Xie Kai contributed equally to this work
1 Radiotherapy Department, Second People’s Hospital of Changzhou, 
Nanjing Medical University, Changzhou 213003, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-021-01928-w&domain=pdf


Page 2 of 16Gao et al. Radiat Oncol          (2021) 16:202 

to X-ray scattering, mechanical accuracy, and movement 
of patients during scanning [4, 5], resulting in serious dis-
tortion of the Hounsfield unit (HU) value. Hence, CBCT 
images are unsuitable for calculating dose distributions 
for replanning in adaptive radiotherapy. Besides, patients 
may undergo multiple CBCT scans during an IGRT treat-
ment course and this raises a great concern about deliv-
ered dose to the patients. Previous study indicated that 
daily CBCT scan for IGRT could increase the secondary 
cancer risk by 2% up to 4% [6]. To reduce the additional 
dose for patients generated from IGRT, the researchers 
have proposed several low-dose CBCT imaging technol-
ogies [7, 8]. Now, the low-dose protocols of CBCT scan-
ning have been widely used in clinical practice.

Many methods of using CBCT images in adaptive 
radiotherapy have been proposed, and these include 
water–air–bone density assignment [9, 10], CBCT imag-
ing process improvement based on modeling [11–13], 
and deformable image registration (DIR) of CT/CBCT 
images [14, 15]. Direct HU-ED calibration of CBCT 
images has relatively low accuracy due to the absence of 
artifact reduction processing. Electron density assign-
ment is time consuming and influenced by human 
experience. Arai [16] modified the HU values of CBCT 
images to match the planning CT images by the histo-
gram matching algorithm and evaluated in the phantom 
and head and neck cancer patients. Traditional model-
based CBCT imaging correction is often realized by cre-
ating complex physical models to simulate the scattering 
[17–20] or changing of hardware. This method is difficult 
to promote due to limitations in hardware or calculation 
efficiency of physical models. Mainegra-Hing [17] calcu-
lated the scatter contribution of CBCT in the phantom 
by Monte Carlo (MC) algorithm. Niu [19] proposed a 
priori CT-based scatter correction method, where the 
corresponding planning CT projections were used to 
correct CBCT projections, and evaluated using two 
phantom studies. Park [20] applied the priori CT-based 
scatter correction technique to phantoms and a prostate 
patient for proton dose calculation. The priori CT-based 
scatter correction method is on the premise that the ana-
tomical structure of CBCT is completely consistent with 
that of planning CT after registration which is difficult to 
satisfied in clinical practice such as the thorax and abdo-
men. DIR transforms planed CT to CBCT through defor-
mation registration to account for anatomical changes. 
This type of method achieves good results at sites that 
are stationary, such as the head and neck. However, the 
method’s registration accuracy needs to be improved at 
sites with considerable anatomic structural changes, such 
as the chest and abdomen [15].

Another method of correcting the HU value of CBCT 
images is to generate synthetic CT (sCT) images from 

CBCT images through deep learning [21–31]. This 
method establishes a complicated mapping between 
CBCT and CT by training neural networks, thus allow-
ing sCT images to be generated from CBCT directly. 
sCT has the same anatomical structure as CBCT, and 
the HU values of tissues are close to those of planning 
CT. Chen [22] used Unet to generate sCT images from 
the CBCT of patients with head and neck cancer, and the 
loss function combined the mean absolute error (MAE) 
and structural similarity index (SSIM). The MAE of sCT 
and CT in the testing results was 18.98 HU. Similarly, Li 
[21] added a residual unit to Unet to generate sCT from 
CBCT from patients with head and neck cancer, and 
the MAE between sCT and CT ranged within 6–27 HU. 
Instead of generating sCT directly, Hansen [28] proposed 
a ScatterNet where pairs of measured and corrected 
projections were trained using a Unet-like architecture. 
The corrected projection was obtained by the priori 
CT-based scatter correction method [19]. Lalonde [29] 
applied the MC simulation to generate CBCT projections 
for head and neck patients, then the Unet was trained to 
reproduce MC projection-based scatter correction from 
raw projections. The MAE of scatter-corrected images 
was 13.4 HU, compared to 69.6 HU for the uncorrected 
images. Landry [30] compared Unet training with three 
different datasets to correct CBCT images for prostate 
patients. The datasets include raw and corrected CBCT 
projections, raw CBCT image and DIR-synthetic CTs, 
raw CBCT image and reconstructed CBCT image based 
on corrected projections. Supervised learning meth-
ods, such as Unet [32], require paired CBCT/CT images 
as the training dataset, and voxel-wise loss is usually 
applied. However, these methods need high-accuracy 
alignment of paired images, which is difficult to acquire 
in clinics, especially at sites with considerable anatomical 
structural changes, such as the chest and abdomen.

The development of generative adversarial net-
works (GAN) [33] has provided a new technology 
and framework for the application of medical images. 
GAN has achieved state-of-the-art performance in 
many medical image tasks, including segmentation 
[34, 35], classification [36, 37] and medical image syn-
thesis [38–40]. Isola[41] proposed conditional adver-
sarial networks(cGAN) in image-to-image translation 
(so-called pix2pix) which was widely used in medical 
image reconstruction [40] and cross modality synthe-
sis [38, 39]. Maspero [38] applied pix2pix in MR-to-
sCT generation on 2D paired transverse image slices 
of 32 prostate cancer patients. Cusumano [39] used 
cGAN to generate sCT from low field MR(0.35  T) 
images in pelvis and abdomen for MR-guided adap-
tive radiotherapy. Quan [40] reconstructed the MR 
image form under-sampled K-space using pix2pix. 
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Zhu [42] proposed an unsupervised cycle-consistent 
adversarial network (cycleGAN) to solve image trans-
lation for unpaired datasets, and it has been applied 
extensively in unpaired medical image translation [43]. 
Liang [23] utilized cycleGAN to generate sCT from the 
CBCT of patients with head and neck cancer by using 
an unpaired training dataset; a phantom experiment 
demonstrated that the method has better anatomical 
accuracy than the DIR method. Kida [26] conducted 
training on unpaired CBCT/CT images of 20 patients 
with prostate cancer by using cycleGAN and found 
that the image quality of sCT substantially improves 
compared with that of the original CBCT. Harms [24] 
fed 3D image patches to cycleGAN for CBCT-to-sCT 
image generation of patients with brain and pelvis can-
cer. They used paired CBCT and CT images in train-
ing and found that the mean absolute errors (MAEs) 
of sCT in the brain and pelvis are 13.0 and 16.1 HU, 
respectively. On the basis of the study of Harms [24], 
Liu [25] added self-attention to the generator net-
work of cycleGAN for CBCT-to-sCT image genera-
tion of patients with pancreatic cancer and calculated 
the radiotherapy dose distribution. These studies on 
sCT generation from CBCT images concentrated on 
the head or abdomen, but limited studies have been 
conducted on CBCT images of the thorax, and low-
dose CBCT-to-sCT image generation have not been 
studied.

In this study, unpaired low-dose CBCT and CT 
images of the thorax were trained using GAN. The low-
dose CBCT images were obtained under a fast proto-
col with 50% less clinical projection frames compared 
with standard protocol. The sCT images generated 
from CBCT were used to calculate the dose distribu-
tion for adaptive radiotherapy. Given that the anatomi-
cal structure changes considerably due to respiratory 
movement, acquiring perfect alignment for CT/CBCT 
images is difficult. Hence, GAN was selected for unsu-
pervised training. Furthermore, the low-dose CBCT 
images of the thorax include considerable artifacts, 
such as streaking, shading, and cupping caused by 
X-ray scatter and respiratory movements of patients; 
these artifacts disturb image translation tasks. We used 
attention-guided GAN (AGGAN) [44], which pays 
attention to the important part of images to eliminate 
numerous artifacts. Moreover, cycleGAN [42] and 
conditional GAN (so-called pix2pix) [41] were used 
in CBCT-to-sCT generation, and the quality of sCT 
images generated by different neural networks was 
compared. Then, a quantitative assessment of the gen-
erated sCT images was performed on a thoracic phan-
tom, and the dose distribution of a radiotherapy plan 
was calculated.

Materials and methods
Image acquisition and processing
The low-dose CBCT and planning CT images of 170 
patients who underwent free-breathing thoracic radio-
therapy in our hospital were collected, 136 pairs as the 
training dataset and 34 pairs as testing dataset. The 
CBCT images were acquired through XVI scanning of a 
linear accelerator Infinity (Elekta, Stockholm, Sweden). 
In this study, a fast CBCT protocol was used for scan-
ning to obtain low-dose CBCT images. Compared with 
the built-in standard protocol, a fast protocol accelerates 
the gantry rotation speed and decreases the scanning 
frames, thus decreasing the scanning time and radia-
tion dose of patients. However, image quality is reduced 
to some extent [8, 45]. The fast protocol was realized 
by modifying the gantry rotation speed of the standard 
chest M20 protocol from 180°/min to 360°/min while 
the other parameters were kept constant. The projection 
frames were reduced from 660 to 330 for each patient 
scan. The gantry was rotated by 360° during each CBCT 
scanning, and 330 projection frames were collected. The 
planning CT images of patients were acquired using 
Siemens CT (SOMATOM Force, Germany). The scan-
ning and reconstruction parameters of CBCT and CT 
are listed in Table1. The CT images were re-sampled to 
keep their resolution consistent with that of the CBCT 
images. Then, the CBCT images of each patient were 
used as fixed images, and the corresponding CT images 
were aligned with the CBCT images via 3D rigid regis-
tration. For the testing dataset, a deformable registration 
was performed on the CT to pair it to the corresponding 
CBCT by a multi-resolution B-spline algorithm. After-
ward, the CT images were cropped to have the same field 
of view (FOV) as the corresponding CBCT images.

Image synthesis with AGGAN
AGGAN has a similar network structure as cycleGAN 
[44], and it involves two generators (GCBCT–CT generates 
CT from CBCT and GCT–CBCT generates CBCT from CT) 
and two discriminators (DCT distinguishes the sCT from 
the real CT and DCBCT distinguishes the synthetic CBCT 
(sCBCT) from real CBCT). AGGAN is composed of two 

Table 1 The scanning and reconstruction parameters of CBCT 
and planning CT image

Tube 
voltage 
(kVP)

Tube 
current 
(mA)

Spatial 
resolution 
 (mm2)

Slice 
thickness 
(mm)

Image 
size

CBCT 120 20 1 × 1 2 410 × 410

Planning 
CT

120 220 0.97 × 0.97 2.5 512 × 512
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cycles. In the first cycle, CBCT images are inputted into 
GCBCT–CT to generate sCT images. Then, sCT images 
are inputted into GCT–CBCT to generate recycled CBCT 
(rCBCT) images. The two discriminators distinguish 
the corresponding generative images. The cycle-consist-
ency loss constrains the generation process to minimize 
the differences between the original CBCT images and 
the rCBCT images. In the second cycle, CT images are 
inputted into GCT–CBCT to generate sCBCT images, which 
are then fed into GCBCT–CT to generate recycled CT (rCT) 
images. Compared with the original cycleGAN, AGGAN 
modifies the generator network, which is equipped with 
a built-in attention module. A cycle process of AGGAN 
is shown in Fig.  1. GCBCT–CT contains the encoding and 
decoding parts. The encoding part is a downsampling 
process that shares weights. The decoding part contains 
two branches; one generates n − 1 content masks, and the 
other generates n attention masks. The attention masks 
are divided into n − 1 foreground attention masks and 
one background attention mask after applying the Soft-
max function. Softmax(Ai) = eAi

/
∑n

c=1
eAc , in which 

A is attention masks and i ranges from 1 to n. The back-
ground attention mask pays attention to the part that is 
unchanged before and after image generation, and this 
part is multiplied with the input CBCT images to obtain 
an output image. The foreground attention mask pays 
attention to the image part that changes before and after 
generation. A total of n − 1 output images are obtained 
by element-wise multiplication of n − 1 foreground atten-
tion masks and n − 1 content masks. These n output 
images are added, thus obtaining the final sCT images.

The GCBCT–CT of AGGAN generates sCT images 
through Eq. (1).

where CCT is the content mask, Af
CT is the foreground 

attention mask, Ab
CT is the background attention mask, 

ICBCT is the input CBCT images, and SCT is the generated 
sCT images. In this study, n was set to 10.

(1)SCT =

n−1
∑

f=1

(CCT ∗ A
f
CT )+ ICBCT ∗ Ab

CT

Fig. 1 Framework of the proposed AGGAN, which contains two attention-guided generators GCBCT–CT and GCT–CBCT. We show one cycle in this figure, 
i.e., CBCT → sCT → rCBCT ≈ CBCT. Each generator such as GCBCT–CT consists of a parameter sharing encoder ECBCT–CT, a content mask generator 
G
C

CBCT−CT
 and an attention mask generator GA

CBCT−CT
 . The proposed model is constrained by the cycle-consistency loss. The symbols ⊕ ,  ⊗ and Ⓢ 

denote element-wise addition, element-wise multiplication and channel-wise Softmax respectively
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The generator GCT–CBCT generates rCBCT images 
through Eq. (2).

Corresponding to the variables in Eq.  (1), CCBCT, 
A
f
CBCT , and Ab

CBCT in Eq.  (2) denote the content, fore-
ground attention, and background attention masks in 
GCT–CBCT, respectively. SCT is the sCT images gained from 
Eq. (1), and RCBCT is the generated rCBCT images.

The adversarial loss of the neural network uses the 
LSGAN (Least Squares GAN) model [46] as shown in 
Eq. (3) and (4). DCT distinguishes sCT from CT and aims 
to classify sCT with label 0 from CT with label 1. Differ-
ently, GCBCT–CT attempts to make sCT as close as possible 
to CT and aims to output 1 for sCT after the discrimina-
tor. The loss functions of the discriminators and genera-
tors are the minimum  and LGAN−GCBCT−CT , respectively.

where m is the number of trained images and  and I iCBCT 
are the ith CT and ith CBCT images, respectively. The 
loss functions of DCBCT and GCT–CBCT are similar to those 
in Eqs. (3) and (4).

The generative adversarial loss is

The neural network still can map images from one 
domain to several domains on the basis of generative 
adversarial loss only. These domains share the same dis-
tribution characteristics, which cannot ensure that the 
learned generator can map the input CBCT images to 
the desired CT images. A cycle-consistency loss needs 
to be added to decrease the mapping function spaces as 

(2)RCBCT =

n−1
∑

f=1

(CCBCT ∗ A
f
CBCT )+ SCT ∗ Ab

CBCT

(3)

LGAN−DCT
=

1

2m

m
∑

i=1

[(DCT (I
i

CT
)− 1)2

+ DCT (GCBCT−CT (I
i

CBCT
))2]

(4)

LGAN−GCBCT−CT =
1

2m

m
∑

i=1

(DCT (GCBCT−CT (I
i
CBCT

)− 1))2

(5)

LGAN−DCBCT
=

1

2m

m
∑

i=1

[(DCBCT (I
i

CBCT
)− 1)2

+ DCBCT (GCT−CBCT (I
i

CT
))2]

(6)

LGAN−GCT−CBCT =
1

2m

m
∑

i=1

(DCBCT (GCT−CBCT (I
i
CT
)− 1))2

(7)

LGAN = LGAN−DCT
+ LGAN−GCBCT−CT

+ LGAN−DCBCT
+ LGAN−GCT−CBCT

much as possible; this loss requires the minimum differ-
ence between the input CBCT and rCBCT images and 
the minimum difference between the input CT and rCT 
images.

GCBCT–CT generates CT images from the input CBCT 
images. If CT images are inputted into GCBCT–CT, then the 
difference between the generated CT image and the input 
CT images should be small as possible, and it will be con-
strained by identity loss.

The total loss function is the sum of the three loss 
functions.

In the experiment, λcycle was set 10, and λidt was set 5.

Neural network training
In conventional thoracic CT images, a few pixels have 
HU > 1500. In this study, the HU value of images was 
clipped to [− 1000, 1500] HU, and those exceeding 
1500 HU were set to 1500 HU. Afterward, the pixel 
values were scaled to [− 1, 1] and inputted into the 
neural network. In consideration of the requirements 
on GPU memory and training efficiency of the neu-
ral network, 2D axial slices of the CT images were 
used and resized to 256 × 256 for training. Kida [26] 
pointed out that 2D axial slices of CT images can gen-
erate good sCT images and do not cause structural 
discontinuity in coronal and sagittal views. The train-
ing dataset contained thoracic CT and CBCT images 
of 136 patients and involved 12,784 slices of CBCT and 
CT images. The testing dataset contained 3,196 slices 

(8)

Lcycle−CBCT =
1

m

m
∑

i=1

∣

∣

∣
GCT−CBCT (GCBCT−CT (I

i
CBCT

))− I i
CBCT

∣

∣

∣

(9)

Lcycle−CT =
1

m

m
∑

i=1

∣

∣

∣
GCBCT−CT (GCT−CBCT (I

i
CT
))− I i

CT

∣

∣

∣

(10)Lcycle = Lcycle−CBCT + Lcycle−CT

(11)Lidt−CT =
1

m

m
∑

i=1

∣

∣

∣
GCBCT−CT (I

i
CT
)− I i

CT

∣

∣

∣

(12)

Lidt−CBCT =
1

m

m
∑

i=1

∣

∣

∣
GCT−CBCT (I

i
CBCT

)− I i
CBCT

∣

∣

∣

(13)Lidt = Lidt−CT + Lidt−CBCT

(14)L = LGAN + �cycle ∗ Lcycle + �idt ∗ Lidt
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of CBCT images of 34 patients. During the training 
of AGGAN and cycleGAN, the CBCT and CT images 
were shuffled in each epoch so that they could be 
trained through unpaired data. The pix2pix network 
was trained using the paired CBCT and CT images.

In AGGAN, the downsampling of the generator con-
sisted of (a) one convolution layer with a 7 × 7 kernel 
with a stride of 1 and 64 channels, (b) two convolution 
layers with a 3 × 3 kernel with a stride of 2 and 128,256 
channels, and (c) 9 residual blocks with a 3 × 3 kernel 
with a stride of 1 and 64 channels. The upsampling 
involved two independent branches of content and 
attention masks. The first of the two branches had two 
deconvolution layers with a 3 × 3 kernel with a stride 
of 2 and 128, 64 channels using the ConvTranspose2d 
function. The last layer of the content mask was a 7 × 7 
convolution layer with a stride of 1 and 9 channels. 
The last layer of the attention mask was a 1 × 1 convo-
lution layer with a stride of 1 and 10 channels. Instance 
normalization was performed after each convolution 
layer except for the last layer, and ReLU was used as 
the activation function [47]. The discriminator used 
PatchGAN in pix2pix [41], the mean of all patches in 
an image was calculated to judge whether the entire 
image was true or false. The batch size was set to 1 
during training, and the Adam optimizer was used for 
optimization. The momentum was set to β1 = 0.5 and 
β2 = 0.999, and a total of 100 epochs were established. 
The initial learning rate of Adam was set to 0.0001, 
and after 50 epochs the learning rate started linearly 
decaying to 0. Pix2pix [41] and cycleGAN [42] were 
trained in the way indicated in the original paper, and 
the number of epochs was set to 100. The neural net-
works were implemented in the PyTorch framework 
with Pycharm software and the training was done on 
a NVIDIA 2080 Ti Graphical Processing Unit(GPU). 
The training computation time for the pix2pix, cycle-
GAN and AGGAN was 428  h, 655  h, 732  h respec-
tively. Once trained, the network is able to generate 
sCT from CBCT images with mean speed of 141 slices/
min, 142 slices/min and 133 slices/min for the pix2pix, 
cycleGAN and AGGAN respectively. That is to say the 
trained networks can generate sCT for a patient (usu-
ally less than 100 slices) within one minute.

Evaluation
A side-by-side comparison of true CT images, CBCT 
and sCT generated by pix2pix, cycleGAN, AGGAN was 
performed at the mediastinal window of [− 400, 400] 
HU and lung window of [− 1200 300] HU. The HU his-
togram distribution of one patient’s 3D images were also 
compared. The sCT images of patients generated from 
neural networks in testing dataset were quantitatively 

evaluated by computing the MAE, SSIM, and peak sig-
nal-to-noise ratio (PSNR) with deformed CT images as 
the reference. An intensity-modulated radiation therapy 
phantom (002LFC, CIRS, USA) was scanned by CT and 
CBCT. The CBCT and CT images of the phantom were 
aligned through 3D rigid registration. The image quality 
of the sCT images for phantom was quantitatively evalu-
ated using the CT images as reference. In addition, three 
regions of interest (ROI) were identified on each image 
(lung, bone and soft tissues). The mean HU values with 
standard deviation (SD) of ROIs for test patients or phan-
tom were calculated and compared. The image quality 
indices were compared by paired Wilcoxon rank test and 
the statistical significance level was set at P < 0.05.

To verify the dose calculation accuracy, the treatment 
plans of the 34 test patients were copied to deformed CT 
images, CBCT and sCT images in the treatment planning 
system (Monaco5.1, Elekta). The dose distribution were 
calculated directly without optimized in these images. 
Using the dose distribution of deformed CT images as 
reference, the 3D gamma passing rates of the dose distri-
butions on CBCT and sCT images were calculated under 
different criteria (distance to agreement and relative dose 
difference). In addition, a treatment plan was designed 
based on the phantom to simulate lung cancer radio-
therapy. Volumetric-modulated arc therapy (VMAT) was 
adopted. The radiation field was rotated by 360°, and tar-
get 5000 cGy of the prescription dose was applied. Subse-
quently, dose distribution was calculated and compared 
in CT, CBCT and sCT images of the phantom.

Results
Comparison of image quality and preservation 
of the anatomical structure
The sCT images generated by different neural networks 
from the CBCT of the same patient in the test are shown 
in Fig. 2. Each row shows images of the same slice. From 
top to bottom, the rows denote axial slices of the medi-
astinal window display, axial slices of the lung window 
display, and coronal and sagittal images. The first and 
second rows show the same slice. The columns from left 
to right display CBCT, CT, and sCT images generated 
by pix2pix, cycleGAN, and AGGAN, respectively. Seri-
ous streaking and shading artifacts were observed at the 
chest wall and other sites of the original CBCT images, 
respectively, due to the influence of the respiratory move-
ment of patients during scanning. The lung window 
shows that the lung was relatively dark, and the HU value 
in CBCT had serious distortion. Most of the artifacts in 
the sCT images generated by pix2pix were eliminated, 
but several anatomical structures, especially the bone, 
cavity, and lung marking regions (red arrows), in the 
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images were destroyed. The coronal and sagittal images 
presented serious image distortions. The sCT images 
generated by cycleGAN maintained several streaking 
artifacts on the axial slices. In particular, the chest wall 
(green arrow in the images) had serious artifacts, but the 
anatomical structure was preserved well. The coronal 
and sagittal images revealed good tissue continuity. Most 
artifacts in the sCT images generated by AGGAN were 
eliminated, and the anatomical structures were well-pre-
served. The quality of the coronal and sagittal images was 
also improved.

The image histograms of the 3D images for patients 
shown in Fig. 2 were analyzed (Fig. 3). In Fig. 3, the x-axis 
denotes the HU value, and the y-axis denotes the num-
ber of occurrences of HU values in the 3D CT images. 
The HU value distributions of the CBCT and CT images 
differed considerably. The HU value of the sCT images 
generated by neural networks showed a similar distri-
bution as that of the real CT images. The distribution 
curves of the CT and sCT images had an evident peak 
at about − 800 HU, which is the HU value distribution of 
the lung. However, such a peak was absent in the CBCT 
images. The HU value distribution of the sCT images 
generated by AGGAN was the closest to that of the CT 
images.

The sCT images generated from the CBCT images of 
test patients in axial view are shown in Fig.  4. The first 
four rows from the top to the bottom are axial slice 
images of different patients, and the fifth row is the lung 

window display of the fourth row. The same row shows 
the same slice of images of patients. The generated sCT 
images in coronal and sagittal views are shown in Fig. 5. 
Similar to the results in Fig. 2, the CBCT images included 
many artifacts, and the HU value had serious distor-
tion. Pix2pix eliminated many artifacts but destroyed the 
anatomical structures, which mainly included bone tis-
sues, cavities, lung marking, liver, and heart edges (red 
arrows). The sCT images generated by cycleGAN had 
well-preserved anatomical structures but retained several 
streaking artifacts from the CBCT images (green arrow). 
The sCT images generated by AGGAN reduced more 
artifacts than cycleGAN, and preserved the anatomical 
structures well.

The quantitative analysis results of CBCT and sCT on 
image quality for testing patients are listed in Table  2. 
The image quality indices of all sCT images are signifi-
cantly improved compared with original CBCT images 
(P < 0.05). The AGGAN achieves the best image qual-
ity with the smallest MAE, largest SSIM and PSNR. The 
image quality indices of sCT generated from cycleGAN 
and AGGAN are both better than pix2pix. Compared 
with cycleGAN, sCT images generated from AGGAN 
show significant superiority in MAE and PSNR (P < 0.05). 
There are no significant difference in SSIM between 
sCT images generated from cycleGAN and AGGAN 
(P = 0.261). The sCT images of patients generated by 
AGGAN show the best image quality. The mean HU val-
ues of ROIs on CT, CBCT and sCT images for patients 

Fig. 2 Quality comparison of CBCT, CT, and sCT images generated by three neural networks for the same patient in axial, coronal, and sagittal 
images. The display window in second row is [− 1200 300] HU (lung window), and display window in other rows is [− 400 400] HU
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Fig. 3 Histogram distribution curves of the HU values of 3D CT, CBCT, and sCT images generated by three neural networks

Fig. 4 Comparison of sCT images generated by the three neural networks from CBCT images of patients in the test. The display window in bottom 
row is [− 1200 300] HU (lung window), and display window in other rows is [− 400 400] HU
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are listed in Table 3. The mean HU values of lung, bone 
and soft tissue on CBCT images are significantly less than 
that on CT images (P < 0.05). In addition, the mean HU 
values of ROIs on CBCT images fluctuated greatly, lead-
ing to a large SD number. The mean HU values of ROIs 
on sCT images generated from three networks are close 
to that on CT images. There are no significant difference 

on mean HU values of ROIs among CT, sCT generated 
from pix2pix, cycleGAN and AGGAN.

Dose calculation
The relative dose distribution calculated in treatment 
plans on CT, CBCT and sCT images for patients are 
shown in Fig.  6. Using the dose distribution calcu-
lated in the CT images as a reference, the absolute 
gamma analysis distribution of each corresponding 
image under the criteria 2 mm/2% are shown in Fig. 7. 
The dose distributions in the original CBCT images 
remained highly divergent compared with the refer-
ence. There are large regions where the gamma index 
is greater than 1 in CBCT images. The dose distribu-
tion of the sCT images are close to the reference, and 
the areas with a gamma index greater than 1 are greatly 
reduced. The statistical analysis of 3D gamma pass-
ing rates with different standards for the 34 testing 

Fig. 5 Comparison of sCT images generated by the three neural networks from test CBCT images in coronal (the top three rows) and sagittal (the 
bottom two rows) views. The display window is [− 400 400] HU

Table 2 Image quality indices of CBCT and sCT images 
generated by the three neural networks

CBCT sCT (pix2pix) sCT (cycleGAN) sCT (AGGAN)

MAE (HU) 92.8 ± 16.7 53.4 ± 9.34 47.1 ± 6.45 43.5 ± 6.69

SSIM (%) 78.3 ± 6.34 88.1 ± 7.12 93.2 ± 4.17 93.7 ± 3.88

PSNR (dB) 21.6 ± 2.81 26.8 ± 2.73 28.3 ± 2.04 29.5 ± 2.36

Table 3 The mean HU values of ROIs on CT, CBCT and sCT images for patients

Mean HU value of ROIs (mean ± SD)

CT CBCT sCT (pix2pix) sCT (cycleGAN) sCT (AGGAN)

Lung (HU) − 722.6 ± 46.1 − 853.9 ± 85.2 − 708.2 ± 49.4 − 704.8 ± 40.8 − 710.3 ± 42.7

Bone (HU) 217.4 ± 23.8 67.1 ± 42.7 223.0 ± 27.5 208.7 ± 25.1 211.7 ± 27.2

Soft tissue (HU) 13.7 ± 16.2 − 116.7 ± 75.0 14.2 ± 15.1 9.6 ± 14.7 12.4 ± 15.7
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patients are shown in Table  4. The gamma passing 
rates of sCT images generated from three methods 
were significantly improved under all criteria com-
pared with that of original CBCT (P < 0.05). Under 
the criteria 1 mm/1% and 2 mm/2%, the gamma pass-
ing rates of cycleGAN and AGGAN were significantly 
increased compared with that of pix2pix (P < 0.05), 
but no significant differences were observed under 
3  mm/3% criteria (P = 0.165). There are no signifi-
cant differences for the gamma passing rates between 
cycleGAN and AGGAN under criteria 2  mm/2% or 
3 mm/3% (P = 0.214 and P = 0.345). However, AGGAN 
got significantly higher passing rates than cycleGAN 
under the 1  mm/1% criteria (P < 0.05). In conclusion, 

the SCT images generated by AGGAN obtained the 
optimal dose calculation accuracy in radiotherapy for 
testing patients.

A phantom study
The CT, CBCT, and sCT images of the phantom are 
shown in Fig. 8. The images from the left to the right 
are the soft tissue window display, lung window dis-
play, and the image difference. The image difference 
was obtained by subtracting the CT image from each 
image. The dark region represents the HU value of the 
image part that is lower than that of the CT images, 
and the bright region represents the HU value of the 

Fig. 6 The relative dose distribution calculated on CT, original CBCT and generated sCT images
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image that is higher than that of the CT images. The 
original CBCT image of the phantom had large dif-
ferences with the CT images. The lung tissues were 

relatively dark, and the soft tissue regions showed 
irregular shading. The sCT image generated by pix2pix 
destroyed the original structures seriously. However, 
the sCT images generated by cycleGAN and AGGAN 
retained the structures of the phantom well. The sCT 
images generated by cycleGAN showed a dark region 
at the right side of the lung, and the HU value of the 
cylinder inserted into the lung was larger than that in 
CT. The sCT images generated by AGGAN showed no 
large differences. The HU profile on one straight (red 
straight) of images is shown in Fig. 9, where consider-
able differences can be observed between the CBCT 
and CT images. The HU value of the CBCT images in 
the lung was close to zero. The HU value distribution 

Fig. 7 The gamma analysis index distribution calculated on original CBCT and generated sCT images with dose on CT image as reference under 
the criteria 2 mm/2%

Table 4 The 3D gamma passing rates of dose distribution in 
CBCT and sCT images for patients

Gamma criteria

1 mm/1% 2 mm/2% 3 mm/3%

CBCT (%) 50.1 ± 9.04 84.4 ± 5.81 92.8 ± 3.86

sCT-pix2pix (%) 75.3 ± 4.50 96.7 ± 2.26 99.4 ± 0.67

sCT-cycleGAN (%) 89.3 ± 3.81 98.2 ± 2.09 99.7 ± 0.44

sCT-AGGAN (%) 91.4 ± 3.26 98.6 ± 1.78 99.7 ± 0.39
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of the sCT images generated by AGGAN was the clos-
est to that of the CT images.

The CT images of the phantom were used as the ref-
erence, and the MAE, SSIM, and PSNR of the differ-
ent images were calculated. The results are listed in 
Table 5. The MAE of the sCT generated by AGGAN was 

the lowest (23.2 HU), but its SSIM and PSNR were the 
highest (0.944 and 30.2, respectively). The SSIM (0.938) 
of the sCT images generated by cycleGAN was close to 
that of AGGAN, but the MAE (32.6 HU) was higher. 
Pix2pix exerted a poor experimental effect on the phan-
tom, as manifested by the lower SSIM and PSNR than 
those of the original CBCT images. The MAE of pix2pix 
was hardly improved compared with that of the CBCT 
images. In addition, the lung, bone and soft tissue were 
contoured and the mean HU value of these ROIs were 
calculated, as shown in Table  6. The mean HU value of 
sCT generated by AGGAN are closest to that of CT on 
three ROIs. In the phantom experiment, the sCT images 
generated by AGGAN showed the best quality.

The calculated dose distribution in the phantom is 
shown in Fig. 10. The upper left part presents diagrams 
of the irradiation field and the target area (green profile), 
and the upper right part presents the calculated dose dis-
tribution in the CT images. The lower left and lower right 
parts show the relative dose difference distributions cal-
culated on CBCT and sCT images generated from pix-
2pix, cycleGAN, AGGAN respectively. The relative dose 
difference distribution was obtained through the calcu-
lated dose from CBCT or sCT images minus the dose in 
the CT images and divided by the maximum dose in the 
CT images. Dark regions indicate that the calculated dose 
is lower than the reference dose, and the bright regions 
indicate that the calculated dose is higher than the ref-
erence dose. The high-dose regions (close to the target) 
in the CBCT images had large differences compared with 

Fig. 8 Quality comparison of CT, CBCT, and sCT images generated 
by the three neural networks. The display window in left column is 
[− 400 400] HU, and in middle column is [− 1200 300] HU

Fig. 9 HU value distribution of images on the red straight
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CT. The dose difference in the sCT images reduced and 
minimum in AGGAN. The 3D gamma passing rates of 
the dose distributions on CBCT and sCT images with 
different standards were calculated (Table 7). The passing 
rates of dose distributions on the sCT images were higher 
than those on the CBCT images under all standards. 
Given the strictest standard of 1  mm/1%, the passing 
rate of the sCT images generated from AGGAN reached 
as high as 96.5%, but that of the CBCT images was only 
79.8%. sCT images generated by AGGAN are thus con-
ducive to calculating radiotherapy doses accurately.

Discussions
In this study, sCT images were generated from low-dose 
CBCT images of thoracic patients by using pix2pix, 
cycleGAN, and AGGAN. The paired datasets were used 
in pix2pix training, whereas cycleGAN and AGGAN 
applied unpaired training datasets. The pix2pix reduced 
most of the artifacts of the original CBCT images in 
axial slices, but it destroyed the anatomical structures of 
normal tissues, resulting in image ambiguity and struc-
tural discontinuity in sagittal and coronal images. In the 
phantom study, pix2pix exerted great structural damages 
and failed to improve the image quality. The poor test 
results of pix2pix may be attributed to the incomplete 
alignment between CBCT and CT images in the training 
dataset. In this study, the training dataset was obtained 
through 3D rigid registration of CT and CBCT images. 
The CT and CBCT images after registration had evident 
local mismatching resulting from anatomical structure 
changes and movement of organs during the two scan-
ning events. In particular, tissue structures, such as the 
trachea, esophagus, and bones, and the organ water/air 
filling status did not correspond to one another. Li [21] 

and Chen [22] implemented paired training by the Unet 
structure and generated sCT images based on CBCT 
images of patients with head and neck cancer. Given 
that organs in the head and neck are stationary, a good 
training dataset was obtained after the registration of 
CBCT and CT images. Liu [25] used a paired training 
dataset through DIR of CBCT and CT images of patients 
with pancreatic cancer. The images were collected from 
patients who received stereotactic body radiation therapy 
and held their breath, and relatively small differences 
among images were obtained. In conventional radiother-
apy, thoracic CBCT images have serious artifacts due to 
respiration movement, and accurate DIR with CT images 
is facing a great challenge [15]. Liang [23] conducted a 
phantom study of the head and neck and proved that sCT 
images generated by neural networks have a more accu-
rate anatomical structure than CT images obtained from 
DIR. Supervised learning methods, such as pix2pix, can 
only generate high-quality sCT images under the prem-
ise of accurate alignment between CBCT and CT images. 
Unsupervised learning methods, such as cycleGAN, do 
not depend on image registration results; thus, the gen-
erated sCT images maintain the anatomical structures 
well, and sagittal and coronal images have continuous 
structures. This finding is similar to the result of Liang 
[23] for head and neck images. However, the sCT images 
generated by cycleGAN in our experiment retained sev-
eral artifacts. Given that the thoracic CBCT images con-
tained more artifacts than the CBCT images of the head 
and neck due to respiration movement, cycleGAN failed 
to inhibit several serious artifacts, especially at the chest 
wall and heart with great movements. AGGAN modified 
the generator of cycleGAN via the background attention 
mask focusing on constant areas and foreground atten-
tion masks focusing on changing areas and combined 
them to generate the final sCT images. The quantitative 
evaluation of sCT images for testing patients and a phan-
tom demonstrated that the sCT images generated by 
AGGAN achieved the best image quality, with the high-
est SSIM, PSNR and the lowest MAE. The accuracy of 
dose calculation in radiotherapy is closely related to the 
accuracy of HU values in CT images. The statistical anal-
ysis on 3D gamma passing rates of dose distribution dem-
onstrated that sCT image generated from all the three 

Table 5 Image quality indices of CBCT and sCT images in the 
phantom

CBCT sCT (pix2pix) sCT (cycleGAN) sCT (AGGAN)

MAE(HU) 62.9 62.3 32.6 23.2

SSIM 0.842 0.828 0.938 0.944

PSNR 25.8 24.0 28.5 30.2

Table 6 The mean HU values of ROIs on CT, CBCT and sCT images for phantom

Mean HU value of organs (mean ± SD)

CT CBCT sCT (pix2pix) sCT (cycleGAN) sCT (AGGAN)

Lung(HU) − 755.0 − 899.7 − 665.2 − 776.8 − 763.5

Bone (HU) 716.2 964.7 570.9 802.0 673.4

Soft tissue (HU) − 27.5 10.3 44.1 24.3 − 6.8
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methods significantly improved the accuracy of dose cal-
culation compared with original CBCT image. The sCT 
generated by AGGAN offered the highest gamma passing 
rates under the strictest criteria of 1  mm/1% compared 
with other methods. The sCT generated by AGGAN 
showed the best performance in correcting HU value of 
the image, the anatomical structures preservation and 
dose calculation in radiotherapy.

Fig. 10 Dose distribution in CT images and distributions of relative dose differences in CBCT and sCT images genarated from pix2pix, cycleGAN 
and AGGAN

Table 7 3D gamma passing rates of dose distribution on CBCT 
and sCT images in the phantom

Gamma criteria

1 mm/1% 2 mm/2% 3 mm/3%

CBCT (%) 79.8 91.6 96.4

sCT-pix2pix (%) 86.4 97.8 99.2

sCT-cycleGAN (%) 91.1 99.3 100

sCT-AGGAN (%) 96.5 99.9 100
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Conclusions
Unpaired low-dose thoracic CBCT and CT images were 
trained by AGGAN. The generated high-quality sCT 
images reduced most artifacts and preserved the ana-
tomical structures well. The sCT generated by AGGAN 
provided high-accuracy dose distribution calculation and 
can thus be applied to adaptive radiotherapy.
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