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Abstract 

Background: Brachial plexopathy is a potentially serious complication from stereotactic body radiation therapy 
(SBRT) that has not been widely studied. Therefore, we compared datasets from two different institutions and gener-
ated a brachial plexus dose–response model, to quantify what dose constraints would be needed to minimize the 
effect on normal tissue while still enabling potent therapy for the tumor.

Methods: Two published SBRT datasets were pooled and modeled from patients at Indiana University and the Rich-
ard L. Roudebush Veterans Administration Medical Center from 1998 to 2007, as well as the Karolinska Institute from 
2008 to 2013. All patients in both studies were treated with SBRT for apically located lung tumors localized superior 
to the aortic arch. Toxicities were graded according to Common Terminology Criteria for Adverse Events, and a probit 
dose response model was created with maximum likelihood parameter fitting.

Results: This analysis includes a total of 89 brachial plexus maximum point dose (Dmax) values from both institu-
tions. Among the 14 patients who developed brachial plexopathy, the most common complications were grade 
2, comprising 7 patients. The median follow-up was 30 months (range 6.1–72.2) in the Karolinska dataset, and the 
Indiana dataset had a median of 13 months (range 1–71). Both studies had a median range of 3 fractions, but in the 
Indiana dataset, 9 patients were treated in 4 fractions, and the paper did not differentiate between the two, so our 
analysis is considered to be in 3–4 fractions, one of the main limitations. The probit model showed that the risk of 
brachial plexopathy with Dmax of 26 Gy in 3–4 fractions is 10%, and 50% with Dmax of 70 Gy in 3–4 fractions.

Conclusions: This analysis is only a preliminary result because more details are needed as well as additional compre-
hensive datasets from a much broader cross-section of clinical practices. When more institutions join the QUANTEC 
and HyTEC methodology of reporting sufficient details to enable data pooling, our field will finally reach an improved 
understanding of human dose tolerance.
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Background
Stereotactic body radiation therapy (SBRT) is  a treat-
ment option increasingly used for patients with lung 
cancer, including apical lung tumors, who are not sur-
gical candidates. The main objective of the treatment is 
to provide the most effective SBRT dose on the tumor 
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with minimal effect on normal tissue while avoiding 
post-radiation complications. Based on the tumor loca-
tion (proximal of the brachial plexus), tumor size, dose, 
and numerous other factors, a potentially severe adverse 
effect after SBRT is radiation induced brachial plexopathy 
(RIBP) [1, 2]. Onset of RIBP symptoms may occur from 
months to years after the radiotherapy [3]. Brachial plex-
opathy, as defined in the Common Terminology Criteria 
for Adverse Events (CTCAE) v.5 [4], may include muscle 
weaknesses of the upper limbs, neuropathic pain, limita-
tion of movement, paresthesia, and wasting. Understand-
ing the tradeoffs between the benefits and risks in SBRT 
dose and fractionation can provide clarity by considering 
the range of severity in symptoms, from asymptomatic to 
full loss of movement of the upper extremity.

In 1991, the Emami paper [5] recommended a 5% risk 
in 5-year tolerance dose (TD 5/5) on the entire brachial 
plexus to be 60  Gy in conventional fractionation, based 
on expert opinion and on dose–response models [6]. Just 
3 years later, the first clinical SBRT paper [7] included a 
dose–response model [8] to guide clinical practice, and 
a recent dose–response model for brachial plexus has 
been published [2] by the same institution. After a quar-
ter of a century of SBRT practice, other studies validating 
these models are lacking and are needed to definitively 
determine tolerance of brachial plexus to SBRT. North 
American clinical trials for stereotactic ablative body 
radiotherapy (SABR) began at Indiana University [9], and 
the brachial plexus dose and toxicity outcome for each 
patient in a cohort was published [1]. The datasets from 
Indiana University and Karolinska Institute were pooled 
in the current study and analyzed as recommended by 
QUANTEC methodology [10, 11]. If this was standard 
practice in radiation oncology, then our understand-
ing of human dose tolerance of various normal tissues 
to radiation would be vastly improved. Unfortunately, 
these examples are the extreme rarity, to the degree that, 
although a PubMed search of (SBRT OR SABR) AND 
(spinal cord) returns more than 250 papers, the High 
Dose per Fraction, Hypofractionated Treatment Effects 
in the Clinic (HyTEC) [12] effort was only able to find 
3 papers that provided full datasets with critical struc-
ture dose and toxicity outcome per patient for spinal 
cord, which only represents about 1% of the published 
literature.

If detailed reporting of the spinal cord is so rare, even 
though it is among the most important critical structures 
in the body, it will be even harder to accumulate suf-
ficient data for other organs. Therefore, is it possible to 
create comprehensive Emami-style dose tolerance limits 
[5] for intricate structures such as brachial plexus? The 
goal of the dose volume histogram (DVH) Risk Map [13] 
is to provide a modernized graphical view of Emami-style 

unified low- and high-risk limits, along with a numerical 
summary of the constraints and estimates of associated 
risk. The aim of this paper is to summarize initial steps 
towards creation of the DVH Risk Map for the brachial 
plexus as an impetus to improve data reporting across 
published literature for better understanding of tolerance 
levels.

Methods
To identify brachial plexus dose tolerance after SBRT 
based on dose–response models of clinical outcomes 
data, the following 6 elements are needed: (1) dose to the 
brachial plexus, (2) fractionation, (3) volume, (4) end-
point, (5) follow-up time, and (6) incidence of the end-
point occurring within the follow-up time [13]. These 6 
items are needed per patient, or at least in enough detail 
to stratify data into small groups of patients with similar 
characteristics. A PubMed search for (brachial plexus) 
AND (stereotactic OR SABR OR SBRT) was performed, 
and 52 papers were found as of July 2020, but only two of 
the studies came close to providing the needed informa-
tion for all patients in a study.

The two datasets were comprised of patients treated (1) 
at Indiana University and the Richard Roudebush Veter-
ans Administration Medical Center from 1998 to 2007 [1] 
as well as (2) the Karolinska Institute from 2008 to 2013 
[2]. All patients in both studies were treated for apically 
located lung tumors localized superior to the aortic arch. 
A total of 89 patients (with 93 lesions) from both insti-
tutes received SBRT and were included in this analysis.

Physical dose without any biological conversions was 
used in the graph of presented brachial plexus maximum 
doses in the Indiana dataset, and the linear quadratic 
(LQ) model [14, 15] as well as the universal survival curve 
(USC) [16] were used to assess the data. In the Karolin-
ska dataset, dose–response models were created using 
both the LQ and USC models. The probit dose–response 
model [17] was used in the Lindberg et  al. [2] study, so 
this model was also used in our pooled analysis for con-
sistency. Brachial plexus maximum point dose (Dmax) 
values were digitized from the source graphs [1, 2] with 
the DVH Evaluator software [13], which then was used 
to perform maximum likelihood parameter fitting [18] to 
determine the values for the probit model [17], and con-
fidence intervals were constructed using the profile likeli-
hood method [19, 20].

All clinical data were collected from the patient records 
and graded using the Common Terminology Criteria 
for Adverse Events (CTCAE). Only toxicities of Grade 
2 and greater in both studies were scored as complica-
tions. Indiana University used CTCAE version 3.0 [21] 
with scoring of grade 1–4 while Karolinska used CTCAE 
version 4.0 [22]. CTCAE version 3.0 focused more on 
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the symptoms affecting activities of daily living while 
version 4 stressed the severity of the symptoms. For the 
purpose of inclusion, we have also included the Modified 
Late Effects Normal Tissue—Subjective Objective Man-
agement Analytic (LENT-SOMA) scale [23, 24] to com-
pare the brachial plexus adverse effects. The details of the 
grading of toxicity are shown in Table  1. The following 
variables were considered in the comparison of toxicity 
rates: gender, age, histology, number and size of tumors, 

dose of SBRT, number of fractions, and time to brachial 
plexopathy from SBRT. The Fisher Exact Test was used to 
assess significance among individuals with toxicity and 
those without toxicity [25, 26].

Results
Patient characteristics, SBRT doses, and grading of radia-
tion induced brachial plexopathy are compared in Table 2 
for both studies. The median patient age was 72 and 73 

Table 1 Endpoint definitions: brachial plexus toxicity grading scales

CTCAE common terminology criteria for adverse events, LENT late effects normal tissues, SOMA subjective, objective, management, analytic, ADL activities of daily 
living

CTCAE Version 3.0 [21] CTCAE Version 4.0 [22] Modified LENT-SOMA scale [23]

Grade 1 Asymptomatic brachial plexopathy Asymptomatic effects Mild sensory deficits, no pain, no treatment 
required

Grade 2 Symptomatic brachial plexopathy without inter-
fering with activities of daily living (ADL)

Moderate symptoms limiting ADL Moderate sensory deficits, tolerable pain, mild 
arm weakness

Grade 3 Symptomatic brachial plexopathy and interfer-
ing with ADL

Severe symptoms limiting self care ADL Continuous paresthesia, with incomplete paresis, 
pain medication required

Grade 4 Disabling brachial plexopathy N/A Complete paresis, excruciating pain, muscle 
atrophy, regular pain medication required

Table 2 Apical lesion patient characteristics

NSCLC non-small cell lung cancer, GTV gross tumor volume, CTV clinical tumor volume, fx fractions; BED10 biological effective dose with α/β = 10 Gy
a One patient with metastasis later on

Indiana University Karolinska University Total

Number of patients 37 52 89

Gender

 Male 21 23 44

 Female 16 29 45

Age at treatment, median (range) 73 (57–81) 72 (35–88)

Number of tumors 37 56 93

Primary lung cancer (NSCLC) 37 30a 67

Metastases 0 22 22

Tumors

 Right 21 28 49

 Left 16 28 44

Volume cc, median (range) GTV 13 (1–113) CTV 9.1 (0.10–74.5)

Follow-up months, median (range) 13 (1–71) 30 (6.1–72.2)

Total treatment dose (Gy), median (range) 57 (30–72) Median 45 Gy in 3 fx
BED10 Range: 95–138 Gy

Median dose per fraction (Gy) (range) 19 (10–24) 15 (6–17)

Median number of fractions (range) 3 (3–4) 3 (3–10)

Number of patients with brachial plexopathy

 Total 7 7 14

 Grade 2 4 3 7

 Grade 3 2 4 6

 Grade 4 1 0 1

Brachial plexopathy development in months post-SBRT, 
median (range)

7 (6–23) 5.8 (0.7–13)
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for Karolinska University and Indiana University, respec-
tively. 93 tumors were treated in total with 22 patients 
having metastases.

Dose, fractionation, and volume of the brachial plexus
At Indiana University, the median prescribed treat-
ment dose was 57 Gy in 3–4 fractions and the maximum 
brachial plexus dose ranged from 6 to 83  Gy (median, 
26  Gy). The Indiana University dataset had 37 bra-
chial plexus Dmax values (for 36 patients) that were all 
included in the model. The paper did not report which 
patients received 3 or 4 fractions, or volume information, 
and these are the main limitations of the study [1]. Both 
published datasets [1, 2] used biological conversions with 
α/β = 3  Gy, thus the biological effective dose is denoted 
as  BED3. According to the linear quadratic model [14, 
15], the 2  Gy per day equivalent EQD2 = 60  Gy Emami 
brachial plexus limit [5] corresponds to  BED3 = 100  Gy. 
In 3 fractions, LQ equates this to 26 Gy, which was equal 
to the median brachial plexus Dmax of the 37 cases, and 
this was initially used as a cutoff point of risk analysis, 
finding the two-year Kaplan–Meier risk of 46% vs 8% 
above and below this cutoff [1].

The Karolinska group used 45 Gy in 3 fractions for 80% 
of the cases, therefore that also was the median prescrip-
tion. One patient was treated with 60 Gy in 10 fractions, 
six were treated with 56  Gy in 8 fractions, and the rest 
were in 3–5 fractions. The authors performed analysis 
with both USC and LQ models and found no major dif-
ference between the two for their data, so presented the 
data in terms of  BED3 with the LQ model. Brachial plexus 
Dmax ranged from  BED3 = 0.10–524 Gy, which we con-
verted to 3-fraction equivalent dose since the median 
number of fractions in both studies was 3. The Karolin-
ska dataset presented model parameters for Dmax, in 
addition to dose to hottest X cc (Dx) for D0.1cc, D1cc 
and D3cc, but the group from Indiana University only 
reported on Dmax. Therefore, the pooled model has no 
volume information, and consists of maximum point 
doses only.

Endpoint, Follow-up time, and estimated risk 
of the endpoint occurring within the follow-up time
Follow-up was longer in Karolinska with median 
30 months (range 6.1–72.2) while Indiana had a median 
of 13  months (range 1–71). Among the 89 patients 
included in both studies, 14 of them developed CTCAE 
grade 2 or higher RIBP, acknowledging the differences 
among the endpoint definitions in Table  1. Among the 
14, the most common complications were grade 2, com-
prising 7 patients. Only 1 patient from Indiana Univer-
sity was recorded with grade 4 disabling RIBP described 
as shoulder ache progressing to paresthesia and further 

worsening to arm and hand wasting. This case corre-
sponded to brachial plexus Dmax of 76 Gy. One patient 
from Karolinska also noted signs of RIBP 13  months 
post SBRT further progressing to total paralysis of the 
arm, but was scored as grade 3 since CTCAE 4.0 is with-
out grade 4 RIBP. Therefore, the LENT-SOMA scale is 
a useful point of comparison in this regard as shown in 
Table 1, because it does include a definition of grade 4.

It is also important to note that in the Karolinska 
study, 13 patients underwent additional radiotherapy to 
the lung ipsilateral to the tumor site that is not included 
in the model in Fig. 1. Out of the 13, 10 of the patients 
had very low additional brachial plexus dose,  Dmax 
 BED3 ≤ 3.1 Gy. The remaining 3 had a prior conventional 
dose of  Dmax  BED3 = 90–123 Gy with only 1 patient from 
this subset developing RIBP. Therefore, for the Karolin-
ska study, 6 out of 7 patients developed RIBP strictly only 
from the SBRT.

Dose–response model and DVH Risk Map
Given the approximation of the 6 elements needed for a 
dose–response model [13], and considering their limita-
tions, caveats, and confounding factors as enumerated 
above and described in the discussion, a pooled dose–
response model was created. According to the fitted pro-
bit model [17–20], the dose corresponding to 50% risk of 
complications was 70.2 Gy (95% CI 55–116 Gy), and the 
slope parameter at this dose was 0.49 (95% CI 0.35–0.74). 

Fig. 1 The probit model [17] of Grade 2–4 Brachial Plexopathy 
shows the Dmax values of the Karolinska and Indiana University (IU) 
datasets [1, 2] with red squares denoting the cases corresponding to 
CTCAE grade 2 or higher adverse events (AE), blue dots representing 
the cases without AE, and quartiles plotted as the four blue bars. 
According to the model in 3–4 fractions, the risk of a brachial 
plexopathy with the dose of 26 Gy is 10%, whereas the 25% and 50% 
risk levels correspond to 47 and 70 Gy respectively
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The probit model and 95% confidence intervals are 
depicted in Fig. 1 [17–20]. Significance was assessed via 
the Fisher Exact Test [25, 26] split at the median dose of 
the Indiana dataset (Dmax = 26  Gy), and at the median 
dose of the combined dataset (Dmax = 27  Gy), yielding 
p-values of 0.01 and 0.0035, respectively. The 5%, 10%, 
and 25% risk levels were 13.7, 26, and 47 Gy, respectively, 
in 3–4 fractions. Appendix Fig. 5 shows that for this data-
set, probit and logistic models are within ± 1.6% of their 
average, up to 60 Gy in 3–4 fractions, and diverge from 
each other above this dose where the data is very sparse.

The connection between dose/volume, fractionation, 
and incidence of complications for the endpoint of grade 
2 or higher brachial plexopathy is summarized in the 
form of a DVH Risk Map [13] in Fig. 2. This map includes 
a graph of published dose constraints in the upper por-
tion of the figure, as well as a numerical summary of 
low- and high-risk constraints in the lower portion of 
the figure, with the resultant estimates of risk from the 
pooled model from Fig. 1. Appendix Fig. 4 shows how the 

5% and 50% risk levels at 5 years (TD 5/5 and TD 50/5) in 
the Emami paper [5] were obtained from expert opinion 
and models in the Burman paper [6]. Similarly, risk levels 
in the DVH Risk Map in Fig. 2 are interpolated from the 
dose–response model of Fig. 1. A more complete descrip-
tion of the DVH Risk Map may be found for several other 
organs-at-risk in the literature [27–29].

The DVH Risk Map in Fig. 2 shows the number of frac-
tions on the x-axis and the raw total physical dose with-
out any BED conversion on the y-axis. Each of the five 
panels specifies a dose/volume metric including dose 
for the 50% and 10% volumes, as well as D3cc, D1cc, 
and Dmax. Published dose constraints from Appendix 
Table  3 are plotted as blue diamond marks on the map 
(Fig.  2). These constraints were partitioned into low- 
and high-risk categories from among the more estab-
lished limits, represented as the circled selected limits 
with labels. The red X represents the dose at which a 
published Adverse Event (AE) occurred, as may be seen 
in Appendix Table  3. For visualization, a trendline of 

Fig. 2 DVH Risk Map for brachial plexus. Note that NRG LU-002 protocol has adopted the Dmax = 26 Gy in 3 fraction constraint from Forquer 2009 
[1], which we have designated as the low-risk limit for Dmax in 3 fractions. In the tabular portion of the figure, the limits that had already been 
published are bold, and the rest are italicized. For the Dmax limits in 3–4 fractions, the estimated risk level interpolated from the model in Fig. 1 is 
shown to the right of the dose constraint
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low- and high-risk are drawn as the dashed green and 
solid red lines in this map. Although the partitioning is 
somewhat arbitrary, this is approximately analogous to 
the TD5/5 and TD 50/5 Emami limits for conventional 
fractionation, but now customized to the published limits 
in a more useful clinical range of practice. Based on the 
pooled dataset, as may be seen from the tabular portion 
of Fig.  2, the low-risk trend of brachial plexus Dmax in 
3–4 fractions is about 10% risk and the high-risk trend is 
about 15% risk.

Discussion
Bias and uncertainty can result from single institution 
non-randomized heterogeneous mixtures of patients 
with varying follow-up times and unknown censor-
ing of competing risks. Throughout the past quarter 
of a century, over a million patients have been treated 
with radiosurgery on Gamma Knife alone [30], over a 
million more patients have been treated with SBRT on 
CyberKnife alone [31], and countless more have been 
treated on stereotactically capable linear accelerators. No 
excuse remains for there to be only two limited published 

datasets for an important critical structure like the bra-
chial plexus. It is imperative that the field of radiation 
oncology collects data more rigorously as highlighted by 
the lessons of QUANTEC [10, 11] and as continues to 
be emphasized by all the HyTEC papers [12, 32]. In the 
meantime, it is important to glean as much information 
as possible from the sparse datasets that do exist, and to 
pool them into increasingly larger datasets [10]. A full de-
identified database of 197 patients with dosimetric infor-
mation and outcome for each patient was published more 
than 100  years ago [33], showing that it is possible to 
accomplish this without sophisticated algorithms (Fig. 3). 
One of the first dose–response models was created more 
than 90  years ago from clinical data by hand on graph 
paper [34], even before the first electronic computer was 
invented. With modern automated algorithms, there is 
no excuse to not save and analyze the data in properly 
designed studies with actuarial outcomes at specific time 
points in multiple institutions with large cohorts of data.
The dose-tolerance numbers for conventional fractiona-
tion from the Emami paper were based on expert opinion 
over 30 years ago, in terms of the radiation dose limits for 

Fig. 3 Excerpt of an example de-identified published database from 1914, “Some Experiments in Standardization of Dosage” [33]. Although 
precision is limited since this table pre-dates the definition of the rad by 4 decades [35] and was long before any of the modern grading systems 
[4], nevertheless the sharing of fractionation, multiple parameters of dose, and outcome per patient as still recommended by HyTEC and QUANTEC 
[10–12, 32] is truly remarkable, since this dataset of 197 cases is from more than 100 years ago
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1/3, 2/3 and 3/3 organ volume, with the probability of 5% 
(TD 5/5) or 50% (TD 50/5) risks of complications within 
a 5-year follow-up. The original paper did emphasize the 
need for more research and available data. Two decades 
later the ensuing accumulated published data was consol-
idated into QUANTEC [36] which was much more accu-
rate owing to the growing body of cooperative trials and 
institutional studies. However, the improved accuracy 
of QUANTEC also came with increased complexity and 
varied format of the limits, which is difficult to use in day 
to day clinical work. The goal of the DVH Risk Map [13] 
is to balance the convenience of a unified framework of 
dose tolerance limits in low-risk and high-risk categories, 
with the accuracy of dose–response modeling from all 
the emerging published clinical data, particularly in the 
setting of hypofractionated SBRT.

Brachial plexus dose tolerance for conventional frac-
tionation has been studied [5, 37, 38] and contouring 
guidelines are available [2, 39, 40]. The Emami limit for 
brachial plexus of EQD2 = 60  Gy [5] corresponds to 
26 Gy in 3 fractions, which is remarkably the same dose 
limit as recommended in the Indiana study [1]. However, 
the paradigm has transformed from allowing 100% organ 
exposure at that dose in conventional fractionation [5], 
now all the way down to the 0% volume at the same dose 
for SBRT [1, 41].

About one third of the combined dataset had Dmax 
values in excess of 10  Gy per fraction, where the LQ 
model has been questioned [16]. For this reason the 
Karolinska authors compared LQ to USC, and found no 
major difference for this data [2]. The Indiana dataset was 
published in terms of physical dose, which avoids ques-
tions regarding BED models, but is itself a major limita-
tion of the pooled model since the fractionation was not 
reported per patient.

Gender, age, histology, number and size of tumors, 
dose of SBRT, number of fractions, and time to brachial 
plexopathy from SBRT varied but were reasonably simi-
lar across studies as may be seen in Table  2. However, 
neither study provided these values per patient, therefore 
no multivariate analyses or subgroups of dose–response 
models could be performed. The median length of patient 
follow-up was more than twice as long in the Karolinska 
study (30 vs 13 months), but at least the median follow-
up in the Indiana University study was longer than the 
median onset of brachial plexopathy in either study (7 
and 5.8  months). Both studies included some patients 
with less follow-up time than the latest reported compli-
cation in either study, so it is highly likely that a longer 

follow-up period would reveal at least somewhat higher 
percentage of complications in either study.

Limitations of both studies include data based on a 
small cohort of patients with limited follow-up. These 
data may not reflect the full incidence of toxicity after 
SBRT because many patients might not survive long 
enough for toxicity to develop or may be lost to follow-
up for a variety of reasons. Another limitation is the 
usage of re-irradiation for some of the Karolinska cases, 
although this only caused one of the complications, so 
insufficient data were available to construct a model that 
could account for re-irradiation tolerance. The Karolin-
ska authors reported distance and overlap of the brachial 
plexus to the tumor, but the Indiana University authors 
did not, so this factor was not included in the pooled 
analysis. Differences in grading of complications was 
acknowledged, which may contribute to inaccurate causal 
analysis. Half of the complications were grade 2, and only 
one potentially grade 4 paresis was reported in each of 
the two studies. However, the studies did not indicate the 
specific grade for each Dmax value of the whole dataset, 
so separate models for each grade cannot be created, as 
was done in a brain dose tolerance study [42]. Further-
more, as noted in Table 1, the grading scales vary espe-
cially for the higher-grade events. A risk of 10% is higher 
than ideal for brachial plexus, but until the grade of each 
patient is reported in a consistent scale, clinicians must 
use their own judgement when interpreting the results.

Conclusions
For lung cancers near the apical region, brachial plexopa-
thy is a major concern for high-dose radiation therapy. 
Based on our analysis of published data, the risk of grade 
2 or higher brachial plexus toxicity after SBRT is approxi-
mately 5%, 10%, and 50% at 13.7, 26, and 70 Gy, respec-
tively, in 3–4 fractions, but the risk of grade 3 or 4 toxicity 
remains unknown. This paper is not intended to be a final 
answer, but rather an appreciation of recent efforts and 
a plea for more data: it is commendable that the Indiana 
and Karolinska authors published the data that enabled 
this pooled model, as recommended by QUANTEC and 
HyTEC. When more institutions join the QUANTEC 
and HyTEC methodology of reporting sufficient details 
to enable data pooling, our field will finally reach an 
improved understanding of human dose tolerance.

Appendix
See Figs. 4, 5 and Table 3.
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Fig. 4 Emami paper [5] examples from expert opinion and Burman [6] models. Arrows depict how the 5% risk levels were interpolated from the 
Burman [6] model for the Emami [5] table of dose tolerance. Dots on the graph depict the TD 5/5 and TD 50/5 tolerance doses, which correspond 
to the values in the table. Kidney is a parallel structure so it is intuitive that the 5% risk level for 1/3 and 3/3 volumes were very different, whereas 
brachial plexus is predominantly a serial structure, so the 5% risk levels were fairly similar for conventional fractionation regardless of volume. 
However, Table 3 of the Karolinska study [2] shows a 50% reduction in tolerance of brachial plexus D3cc as compared to the maximum point dose 
(Dmax), therefore volume effects may be more important for SBRT. In the Emami paper [5], for both kidney and brachial plexus the TD5/5 and 
TD50/5 limits were in close agreement with the models. However, for other structures such as Bladder there was more reliance on expert opinion, 
as can be observed by the location of the TD 5/5 and TD 50/5 dots in the Burman paper [6], in relation to the modeled curves

Fig. 5 Comparison of logistic [74] and probit [17] in Schultheiss et al. 
[75] showed that for some datasets these two models may differ by less 
than 1% over their entire range. For this dataset as shown above, the two 
models differ by no more than ± 1.6% from their average, up to 60 Gy in 
3–4 fractions, but diverge at doses above that where the data is sparse. 
Abbreviations IU Indiana University, AE adverse event (brachial plexopathy)
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The following form of the probit model [17] was used 
in the manuscript:

where TD50 is the 50% risk level, 
t = (Dmax − TD50)/(m× TD50) , and m is the normal-
ized slope.

The following form of the logistic model [74] was 
used in Fig. 5 for comparison:

where TD50 is the 50% risk level and g50 is the slope 
parameter.
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(1)NTCPprobit =
1

√
2π

t
∫

−∞
e−x2/2dx

(2)NTCPlogistic = 1/(1+ (TD50/Dmax)
∧(4 ∗ g50)),
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