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Abstract 

Background:  Radiotherapy of gastric mucosa-associated lymphoid tissue (MALT) lymphoma should be delivered 
to the entire stomach with planning target volume (PTV) that accounts for variations in stomach volume, respiratory 
movement, and patient set-up error. In this study, we evaluated whether the use of four-dimensional cone-beam 
computed tomography (4D-CBCT) reduces the PTV.

Methods:  Eight patients underwent radiotherapy with 15 fractions of gastric MALT lymphoma using 4D-CBCT. PTV 
structures of 5–30 mm margins (5 mm intervals) from the clinical target volume (CTV) delineated based on the 4D-CT 
images (CTV-4D) were generated. For the target localization, we performed matching based on skin marking (skin 
matching), bone anatomy (bone matching), and stomach anatomy (4D soft-tissue matching) based on registration 
between planning CT and 4D-CBCT images from 10 phases. For each patient, we calculated the covering ratio (CR) of 
the stomach with variable PTV structures, based on the 4D-CBCT images, with a total of 150 phases [CR (%) = (num-
ber of covering phases/150 phases) × 100], for three target localization methods. We compared the CR values of the 
different target localization methods and defined the PTV with an average CR of ≥ 95% for all patients.

Results:  The average CR for all patients increased from 17.9 to 100%, 19.6 to 99.8%, and 33.8 to 100%, in the skin, 
bone, and 4D soft-tissue matchings, respectively, as the PTV structures increased from 5 to 30 mm. The CR obtained 
by 4D soft-tissue matching was superior to that obtained by skin (P = 0.013) and bone matching (P = 0.008) for a PTV 
structure of 15 mm margin. The PTV required an additional margin of 20 mm (average CR: 95.2%), 25 mm (average CR: 
99.1%), and 15 mm (average CR: 98.0%) to CTV-4D for the skin, bone, and 4D soft-tissue matchings, respectively.

Conclusions:  This study demonstrates that the use of 4D-CBCT reduces the PTV when applying 4D soft-tissue 
matching, compared to skin and bone matchings. Additionally, bone matching does not reduce the PTV as compared 
with traditional skin matching.
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Background
Radiotherapy of gastric mucosa-associated lymphoid 
tissue (MALT) lymphoma provides excellent long-term 
local control and survival [1–4]. The clinical target vol-
ume (CTV) for gastric MALT lymphoma is defined 
as the entire stomach, and the planning target volume 
(PTV) is defined as CTV along with an additional mar-
gin, which accounts for variations in stomach volume, 
respiratory movement, and patient set-up error. There-
fore, the target volume for gastric MALT lymphoma is 
very large. Moreover, it is well-known that intrafractional 
gastric motion and interfractional variation of the stom-
ach volume occur during treatment for gastric lymphoma 
[5–8]. To address these issues, four-dimensional (4D) 
computed tomography (CT) is currently used to consider 
intrafractional gastric motion during treatment planning 
[9–11], and image-guided radiotherapy (IGRT) using 
daily CT images (CT-IGRT) is used to evaluate interfrac-
tional changes in stomach volume during the course of 
the treatment [8, 12]. Historically, before the era of IGRT, 
PTV was typically defined as CTV along with an approxi-
mately 20–30-mm margin with matching based on skin 
marks (skin matching) [1, 5, 6]. Even after the introduc-
tion of CT-IGRT, a CTV along with an approximately 
20  mm margin was required with matching based on 
bone anatomy (bone matching) in the free breathing (FB) 
condition [7, 8]. Recently, using a breath-hold technique, 
Wang et  al. reported that daily CT-IGRT with match-
ing based on stomach anatomy (soft-tissue matching) 
enables excellent target coverage with a small additional 
margin of 5–10 mm [12]. However, the use of a breath-
hold technique is not prevalent in all institutions.

4D cone-beam CT (4D-CBCT) has recently been 
introduced into the clinical setting and is used for IGRT 
of lung and abdominal tumors [13–16]. Furthermore, 
4D-CBCT has been used for assessing both the intra-
fractional and interfractional movements of a tumor 
and the PTV settings [17, 18]. We previously reported a 
treatment method that employed IGRT using 4D-CBCT 
images (4D-CBCT-IGRT) for a patient with gastric 
MALT lymphoma, and we suggested that this approach 
provides more precise target localization [19]. However, 
our previous report did not systematically evaluate the 
impact of 4D-CBCT-IGRT on the target localization dur-
ing the treatment course of gastric MALT lymphoma.

Intensity-modulated radiation therapy (IMRT) 
has recently been introduced for gastric lymphoma 

radiotherapy to obtain dose distributions that are highly 
conformal to the PTV while minimizing the dose to the 
organs at risk (OARs), such as the liver, spinal cord, and 
kidneys [20–23]. IMRT should be delivered with high 
accuracy in combination with precise IGRT. Hence, 
determining whether the use of 4D-CBCT-IGRT con-
tributes to a reduction of PTV is important in minimiz-
ing the dose to the OARs in patients with gastric MALT 
lymphoma.

In this study, we evaluated whether the use of 
4D-CBCT-IGRT reduced the PTV by determining the 
required PTV for three target localization methods, 
based on skin, bone, and 4D soft-tissue matching, for gas-
tric MALT lymphoma radiotherapy in the FB condition.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional research ethics board of our hospital. Informed 
consent for treatment and the use of 4D-CBCT-IGRT 
and its images for this study was obtained from all 
patients. Eight patients who completed 4D-CBCT-IGRT 
for gastric MALT lymphoma radiotherapy at our hospi-
tal between May 2017 and October 2019 were included 
in this study.

4D‑CT imaging and structure generation
All patients were instructed to fast for at least 8 h before 
planning CT simulation and treatment to minimize vari-
ations in stomach volume. They underwent CT simu-
lation in the supine position with their arms raised; a 
LightSpeed RT (GE Healthcare, Chicago, IL) or a Dis-
covery RT CT scanner (GE Healthcare) was used for 
the CT simulation. 4D-CT scans were performed using 
a real-time position management system (Varian Medi-
cal Systems, Palo Alto, CA) or smart deviceless 4D (GE 
Healthcare) [24]. The scan parameters were set to 120 kV, 
70 mA, a gantry rotation time of 0.5–1.0 s, a slice thick-
ness of 2.5 mm, and cine mode. The cine durations were 
set to the respiratory cycles plus the gantry rotation 
time. The cine images were sorted into 10 phases using 
a phase-binning algorithm. The average intensity projec-
tion (AIP) CT images were generated from the projection 
data of all phases. In cases where AIP CT images could 
not be generated, slow CT images were acquired in the 
axial mode, with a gantry rotation time of 4 s and a slice 
thickness of 2.5 mm [25, 26].

Keywords:  Malignant lymphoma, Mucosa-associated lymphoid tissue lymphoma, Four-dimensional computed 
tomography, Four-dimensional cone-beam computed tomography, Image-guided radiotherapy, Planning target 
volume
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All CT images were exported to the treatment planning 
system (Pinnacle3, version 9.10; Phillips Radiation Oncol-
ogy Systems, Fitchburg, WI) and were registered by the 
hardware arrangement. The gross tumor volume (GTV) 
was identified based on the endoscopic examination find-
ings, and it was confirmed that the entire stomach appro-
priately covered the GTV. The CTV was defined as the 
entire stomach [19, 27]. The CTV delineated based on 
the 4D-CT images was defined as the CTV-4D. A PTV 
was defined as the CTV-4D along with an additional 
margin, which accounts for intra- and interfractional 
variations in stomach volume, respiratory movement, 
and patient set-up error [10, 19]. All patients underwent 
the treatment with an individually-defined PTV consid-
ering age, performance status, and the dose volume his-
togram, in terms of target coverage and OAR doses. The 
structure of the OARs was delineated based on the AIP 
or slow CT images. The PTV structures with 5, 10, 15, 20, 
25, and 30  mm margins from the CTV-4D were gener-
ated for the retrospective evaluation (Fig. 1). AIP or slow 
CT images and all structures were exported into the Ele-
kta X-ray volume imaging (XVI) software, version 5.0.4 
(Elekta Oncology Systems, Crawley, UK) as references to 
be used for image guidance.

4D‑CBCT imaging and target localization method
During the initiation of each actual treatment session, 
the patient was positioned based on body skin marks and 
aligned at the isocenter. Before the daily treatment frac-
tion of radiotherapy, 4D-CBCT imaging based on skin 
marks (skin matching) was performed using the Elekta 
Symmetry 4D IGRT System (Elekta Oncology Systems, 
Crawley, UK). The projection data of 4D-CBCT were 
sorted into 10 respiratory-phase bins. The scan param-
eters were set to 120  kV, 20  mA, 16  ms per frame, and 
a slice thickness of 2  mm, with a gantry rotation speed 

(GRS) of 50° min−1 [17, 19]. Automatic registration 
between planning CT and 4D-CBCT images was per-
formed based on the bone anatomy (bone matching) 
using the Elekta XVI software. Subsequently, the manual 
registration between planning CT and 4D-CBCT images 
was performed based on the stomach anatomy using the 
axial, coronal, and sagittal images until moving images 
of the stomach in all 10 phases of the 4D-CBCT images 
were symmetrically positioned within the PTV structure 
in the planning CT images (4D soft-tissue matching).

Evaluation of the required PTV for target localization 
methods
We retrospectively evaluated the required PTV to 
cover the entire stomach, which was confirmed using 
daily 4D-CBCT images, according to the PTV struc-
tures with 5, 10, 15, 20, 25, and 30  mm margins from 
the CTV-4D. We acquired daily 4D-CBCT images of 
10 phases with 15 fractions for each patient (a total 
of 150 phases per patient). We also compared the 
required PTV for three target localization methods of 
the skin, bone, and 4D soft-tissue matchings using daily 
4D-CBCT images. The covering phase of the stom-
ach was defined as the phase in which the PTV struc-
tures covered the overall stomach and was evaluated 
by the consensus of two radiotherapists with 4 and 
18  years of experience, respectively. For each patient, 
we calculated the covering ratio (CR) of the stom-
ach with PTV structures of 5–30  mm margins, based 
on the 4D-CBCT images of a total of 150 phases [CR 
(%) = (number of stomach covering phases / total of 
150 phases) × 100] (Fig.  2) in three target localization 
methods, and defined a minimum PTV with an aver-
age CR of ≥ 95% for all patients as a requirement [19]. A 
Kruskal–Wallis test was performed to compare the CRs 
of the three target localization methods. Subsequently, 

Fig. 1  PTV structures for the retrospective evaluation. PTV structures with 5 mm (purple), 10 mm (blue), 15 mm (yellow-green), 20 mm (orange), 
25 mm (yellow), and 30 mm (white) margins from the CTV delineated based on the 4D-CT images (CTV-4D) are displayed on the axial (a), coronal 
(b), and sagittal (c) planes of planning CT images (AIP CT images of 4D-CT). The OARs of the liver, spinal cord, and kidneys are shown in brown, 
green and lavender, respectively
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a Dunn–Bonferroni test was performed to compare 
the CRs of the three methods as a post hoc analysis if 
the Kruskal–Wallis test result was significant [28]. Sta-
tistical significance was defined as a P value < 0.05. All 
statistical calculations were performed using the SPSS 
software, version 25.0 (SPSS Inc., Chicago, IL, USA).

Results
Covering ratio of the stomach with a variable PTV structure
Table 1 presents the average CR of the skin, bone, and 
4D soft-tissue matching for eight patients, according to 
variable PTV structures. The average CR for all patients 
increased from 17.9 to 100%, 19.6 to 99.8%, and 33.8 
to 100%, for skin, bone, and 4D soft-tissue matchings, 
respectively, as the PTV structures increased from 5 
to 30  mm. The CR obtained by 4D soft-tissue match-
ing was significantly superior to that obtained by skin 
(P = 0.013) and bone matching (P = 0.008) for a PTV 
structure of 15 mm.

Required PTV for target localization methods
Figure  3 shows the PTV structures that yield CR ≥ 95% 
for skin, bone, and 4D soft-tissue matching for each 
of the eight patients. The PTV structure that yields 
CR ≥ 95% for 4D soft-tissue matching is smaller than 
that of skin matching and is smaller than or equal to that 
of bone matching. The PTV (average CR ≥ 95%) for all 
patients required an additional margin of 20 mm (average 
CR = 95.2%), 25  mm (average CR = 99.1%), and 15  mm 
(average CR = 98.0%) to CTV-4D for skin, bone, and 4D 
soft-tissue matchings, respectively (Table 1, Fig. 4).

Discussion
The results of the current study show that 4D soft-tissue 
matching provides more precise IGRT with a smaller 
PTV than skin and bone matching. They also show that 
a PTV with bone matching is not significantly different 
from that with skin matching. This indicates that, com-
pared with skin matching, image guidance based on bone 
matching does not contribute to a reduction of PTV for 

Fig. 2  Illustration of how to calculate the covering ratio (CR) of the stomach with PTV structures of 5–30 mm margins, based on the 4D-CBCT 
images. The CR with PTV structure in the illustration is 70%

Table 1  Average covering ratios of  the  stomach based 
on  skin, bone, and  4D soft-tissue matching according 
to PTV structures of 5, 10, 15, 20, 25, and 30 mm margins 
for eight patients

PTV 
structure 
(mm)

Covering ratio (%) P value

Skin matching Bone matching 4D soft-
tissue 
matching

5 17.9 19.6 33.8 0.323

10 53.8 52.8 76.7 0.053

15 82.5 79.7 98.0 0.003

20 95.2 93.4 99.4 0.186

25 99.2 99.1 100.0 0.320

30 100.0 99.8 100.0 0.368
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Fig. 3  PTV structures with a covering ratio ≥ 95% for skin, bone, and 
4D soft-tissue matching for eight patients
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gastric MALT lymphoma radiotherapy. Methods using 
4D soft-tissue matching can be applied not only to assess 
the daily interfractional variation of the target volume but 
also to provide precise target localization while reducing 
the PTV.

In this study, we performed treatment planning using 
4D-CT in the FB condition. The use of 4D-CT enables 
more accurate patient-specific PTV for intrafractional 
motion caused by respiration [10]. The PTV for gas-
tric MALT lymphoma radiotherapy should consider 
not only set-up variations but also the interfractional 
stomach variation. The results of the PTV in the cur-
rent study reflect the interfractional variation of the 

stomach volume resulting from using daily 4D-CBCT-
IGRT. Based on these results, the CTV-4D along with an 
additional margin of 15  mm was sufficient to cover the 
entire stomach only if 4D-CT planning and 4D soft-tissue 
matching using 4D-CBCT were performed, but it was 
insufficient for skin and bone matching. Johnson et  al. 
investigated an additional margin required to encompass 
95% of the stomach volume using daily megavoltage CT 
in gastric lymphoma radiotherapy of three patients in 
the FB condition [8]. They showed that a uniform mar-
gin of 22  mm was required with bone matching. The 
results of the current study based on bone matching are 
consistent with their results. Moreover, the International 

Fig. 4  Representative images (patient number 4) of the positional discrepancy between target localization methods based on skin matching (a), 
bone matching (b), and 4D soft-tissue matching (c) using 4D-CBCT. A PTV structure of 15 mm (yellow) margin from the CTV defined based on the 
4D-CT (CTV-4D) is displayed in the 4D-CBCT images. Target localization by skin and bone matching could not cover the entire stomach in the PTV 
(a, b). Target localization by 4D soft-tissue matching was able to cover the entire stomach in the PTV (c)
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Lymphomas Radiation Oncology Group (ILROG) guide-
lines for treatment planning of gastric lymphoma recom-
mends adding a margin of at least 10 to 20 mm to CTV 
to accommodate stomach movement [27]. The results of 
the current study based on 4D soft-tissue matching are 
consistent with ILROG guidelines. However, a isotropic 
margin of the current study was not evaluated in three 
dimensions. The range of the stomach movement was 
complex and different in the cranio-caudal, right-left, 
and anterior–posterior directions [6–8, 11]. Therefore, 
the optimal PTV should be determined in three dimen-
sions. Herein, although the optimal PTV could not be 
determined, 4D-CT planning and 4D soft-tissue match-
ing using 4D-CBCT were deployed to individualize the 
PTV considering the interfractional variation in stomach 
volume [11].

A limitation of our study is the relatively small number 
of patients. Moreover, we could not evaluate intrafrac-
tional changes in stomach volume and respiratory move-
ment during treatment. In-treatment 4D-CBCT could be 
used to evaluate the intrafractional stomach changes [29]. 
Based on the results of our study, we recommends using 
the daily 4D-CBCT. An optimal imaging protocol to bal-
ance the image quality with patient exposure to X-rays is 
under consideration [14, 16].

Conclusions
In this study, we retrospectively evaluated whether 
the use of 4D-CBCT reduced PTV by determining the 
required PTV for target localization methods of the skin, 
bone, and 4D soft-tissue matching for gastric MALT 
lymphoma radiotherapy. 4D soft-tissue matching using 
4D-CBCT provides a smaller PTV than skin and bone 
matching. Furthermore, it was found that image guidance 
with bone matching does not contribute to a reduction 
of PTV compared with skin matching. This study dem-
onstrates the efficacy of 4D soft-tissue matching using 
4D-CBCT for gastric MALT lymphoma radiotherapy.
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