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Abstract 

Background:  This study aimed to evaluate the predictive potential of contrast-enhanced computed tomography 
(CT)-based imaging biomarkers (IBMs) for the treatment outcomes of patients with oesophageal squamous cell carci-
noma (OSCC) after definitive concurrent chemoradiotherapy (CCRT).

Methods:  Altogether, 154 patients with OSCC who underwent definitive CCRT were included in this retrospective 
study. All patients were randomised to the training cohort (n = 99) or the validation cohort (n = 55). Pre-treatment 
contrast-enhanced CT scans were obtained for all patients and used for the extraction of IBMs. An IBM score, was con-
structed by using the least absolute shrinkage and selection operator with Cox regression analysis, which was equal 
to the log-partial hazard of the Cox model in the training cohort and tested in the validation cohort. IBM nomograms 
were built based on IBM scores for individualised survival estimation. Finally, a decision curve analysis was performed 
to estimate the clinical usefulness of the nomograms.

Results:  Altogether, 96 IBMs were extracted from each contrast-enhanced CT scan. IBM scores were constructed 
from 11 CT-based IBMs for overall survival (OS) and 8 IBMs for progression-free survival (PFS), using the LASSO-Cox 
regression method in the training cohort. Multivariate analysis revealed that IBM score was an independent prognos-
tic factor correlated with OS and PFS. In the training cohort, the C-indices of IBM scores were 0.734 (95% CI 0.664–
0.804) and 0.658 (95% CI 0.587–0.729) for OS and PFS, respectively. In the validation cohort, C-indices were 0.672 (95% 
CI 0.578–0.766) and 0.666 (95% CI 0.574–0.758) for OS and PFS, respectively. Kaplan–Meier survival analysis showed a 
significant difference between risk subgroups in the training and validation cohorts. Decision curve analysis con-
firmed the clinical usefulness of the IBM score.

Conclusions:  The IBM score based on pre-treatment contrast-enhanced CT could predict the OS and PFS for patients 
with OSCC after definitive CCRT. Further multicentre studies with larger sample sizes are warranted.
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Background
Oesophageal cancer (OC) is one of the most common 
cancers globally and in 2018 its incidence and number of 
cancer-related deaths ranked seventh and sixth, respec-
tively [1]. The management of OC typically involves 
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multidisciplinary therapy, including definitive concurrent 
chemoradiotherapy (CCRT), which is the main stand-
ard treatment for oesophageal squamous cell carcinoma 
(OSCC) for medically unresectable tumours; and is also 
an option for resectable tumours. However, the outcomes 
of CCRT among these patients are still disappointing, 
with 3-year overall survival (OS) rates of 23–44.7% [2–5]. 
More than 50% of patients in the RTOG 85-01 trial and 
INT 0123 trial experienced locoregional disease progres-
sion [3, 5]. Patients with higher mortality risk following 
CCRT may benefit from more intensive primary treat-
ment (e.g., planned radical surgery after CCRT), adjuvant 
therapy (e.g. chemotherapy), or more frequent follow-up. 
The application of these strategies requires the identifi-
cation of patients with high mortality risk prospectively 
to achieve personalised management. Thus, to improve 
the overall survival of patients with OC after CCRT, it 
is crucial to predict the mortality risk of each individual 
patient.

Prediction of outcomes among patients with OC after 
CCRT remains an unmet clinical need. One of the most 
commonly used methodologies for prognostic evaluation 
in the clinic is the TNM staging system, which stratifies 
patients into different stages according to their tumour 
burden. Although the clinical stage system provides 
important insights for evaluating outcomes of patients 
with different stages, its role in survival prediction among 
patients with the same disease stage is non-significant. 
Indeed, previous studies have shown that the clinical 
stage system fails to predict heterogeneous outcomes of 
patients with locally advanced disease following CCRT 
[6–8]. A variety of other clinical factors and biomarkers 
have also been assessed for their prognostic potential [9–
11]. Yet none of these factors have been widely used for 
the clinical stratification of patients and decision-making, 
as each of them has weaknesses and limitations.

By using current imaging techniques, quantitative 
imaging biomarkers (IBMs) could become an interest-
ing way of assessing multiple cancer diagnosis and prog-
nosis. These so-called radiomics could extract relevant 
information from commonly available images with a high 
throughput [12–14]. Previous studies have reported on 
the potential information to be gleaned from computed 
tomography (CT) IBMs in OC, and were able to assess 
and predict histopathological characteristics, treatment 
response, or survival outcome among patients with OC 
to some extent [15–19]. CT scans play an important role 
in the radiation treatment of OC, including diagnosis, 
staging, treatment planning, quality control, and follow-
up. Non-contrast enhanced CT-based IBMs have been 
shown to be correlated with patient outcomes for a num-
ber of cancer types, including OSCC [18, 20]. However, 
the most commonly available imaging modalities for 

patients after undergoing definitive CCRT were not non-
contrast enhanced CT scans but contrast-enhanced CT 
scans, which were performed during treatment planning. 
A previous study suggested that post-treatment IBMs 
extracted from contrast-enhanced CT images might have 
a correlation with OS in patients with OC who received 
definitive CCRT [16]. Although the sample size of this 
study was small and only included 26 cases of squamous 
cell carcinoma (SCC), it provided encouragement for 
the pursuit of further studies. The most common patho-
logical type of OC in China is SCC, and radiotherapy is 
administered with a total dose of 60–66  Gy [21]. This 
range is much higher than the dose used in the standard 
treatment of OC via conventional fractionated radiother-
apy (50.4  Gy). Oesophageal oedema is a common acute 
adverse event after definitive CCRT. There are fewer 
residual lesions that could be used for objective analy-
sis or evaluation after definitive CCRT. Further, some 
patients with a complete response did not have residual 
lesions. It is unclear whether contrast-enhanced CT 
images obtained before treatment could serve as a fea-
sible source for radiomics analysis in OSCC. Therefore, 
stronger evidence is needed in support of the implica-
tions for survival outcomes and the reliability of the 
methodology.

In this study, based on pre-treatment contrast-
enhanced CT images, we sought to develop and validate 
an IBM score to predict OS and progression-free survival 
(PFS) for patients with OSCC and assess its value for 
individual OS and PFS estimation.

Methods
Patients
The protocol for this retrospective study was obtained 
from the local ethics and institutional review board. 
Approval and the need for informed consent had been 
waived. This study included patients with OC who 
underwent definitive CCRT at AAA between Sep-
tember 2009 and August 2015. The inclusion criteria 
were: (1) pathological diagnosis of OSCC; (2) primary 
tumour located in the cervical, upper thoracic, or mid-
dle thoracic oesophagus; and (3) contrast-enhanced 
CT scan findings, which were used in treatment plan-
ning before definitive CCRT. The exclusion criteria 
were: (1) patients who only received radiotherapy or 
chemotherapy; (2) prior surgery or administration 
of chest radiotherapy or chemotherapy. As shown 
in Fig.  1, the final study population consisted of 154 
patients. All patients received intensity modulated 
radiation therapy (IMRT) combined with chemo-
therapy. Of these, 78 patients with OSCC were from 
a phase II prospective clinical study, using simultane-
ous modulated accelerated radiotherapy (SMART) 
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combined with chemotherapy [22]. The 154 patients 
were randomly assigned into a training cohort (n = 99) 
and validation cohort (n = 55).

All patients underwent simulation CT scans for 
treatment planning. Seventy-eight patients underwent 
SMART, followed by radiation therapy with a pre-
scribed dose of 66 Gy/30F, 5 days/week. Other patients 
underwent radiation therapy with a prescribed dose of 
64/32F, 5  days/week. Most patients (90.9%) received 
concurrent chemotherapy based on the cisplatin and 
5-fluorouracil (PF) regimen. The intensity of con-
current chemotherapy was relatively reduced among 
patients of advanced age or with poor performance 
status. Data regarding clinical characteristics of 
patients were collected in both cohorts, including age, 
sex, clinical stage, and tumour location. Dose-volume 
information for the primary tumour was collected 
from the radiotherapy planning system. Further details 
are shown in Table 1.

Contrast‑enhanced CT image acquisition
The CT scans of all patients were acquired (Philips 
Brilliance CT Big Bore Oncology Configuration, 
Cleveland, OH, USA; voxel size: 1.0 × 1.0 × 3.0 mm3 
for 79 patients and 1.0 × 1.0 × 5.0 mm3 for 72 patients; 
convolution kernel: Philips Healthcare’s B), using a 
scanning voltage of 120 kVp with a slice thickness 
of 3–5  mm after an intravenous injection of 75  ml 
of 300  mg/mL iodinated contrast agent at a rate of 
1.8–2  mL/sec with a pump injector (Medrad Stellant; 
Bayer, Beijing, China). The CT images were transmit-
ted to the radiation therapy planning system (Eclipse 
Planning System version 10.0) via the DICOM 3.0 port.

Region of interest (ROI) delineation and IBMs extracted
Pre-treatment contrast-enhanced CT scan images of 
patients were exported for analysis. The primary tumour 
was delineated by experienced radiation oncologists 
on the mediastinal window of the planning CT scan. 
IBMs were extracted by internal programming software 
using MATLAB R2016a (Mathworks, Natick, USA) and 
its toolbox. From the contrast-enhanced CT images of 
each patient, 96 IBMs were extracted, including the fol-
lowing types: (1) 24 CT intensity IBMs, describing the 

Fig. 1  Flowchart of inclusion in the present study. OSCC, 
oesophageal squamous cell carcinoma; CCRT, concurrent 
chemoradiotherapy; CT, computed tomography

Table 1  Clinical characteristics of  154 patients with  OSCC 
after definitive CCRT​

OSCC, oesophageal squamous cell carcinoma; CCRT, concurrent 
chemoradiotherapy; AJCC, American Joint Committee on Cancer staging system 
(version 6.0th); RT, radiotherapy; PF, cisplatin and 5-fluorouracil
a  American Joint Committee on Cancer (AJCC) staging system (version 6.0th)
b  p value was analysed using the independent samples t-test
c  p value was analysed using the chi-squared test

Factors Training cohort
n (%)

Validation cohort
n (%)

p value

Age, years 0.087b

 Median (range) 61 (37–76) 58 (40–76)

Sex 0.841c

 Male 77 (77.8%) 42 (76.4%)

 Female 22 (22.2%) 13 (23.6%)

Tumour location 0.325c

 Cervical 16 (16.2%) 13 (23.6%)

 Upper 54 (54.5%) 31 (56.4%)

 Middle 29 (29.3%) 11 (20.0%)

T stagea 0.469c

 T2 11 (11.1%) 10 (18.2%)

 T3 46 (46.5%) 24 (43.6%)

 T4 42 (42.4%) 21 (38.2%)

N stagea 0.655c

 N0 36 (36.4%) 22 (40.0%)

 N1 63 (63.6%) 33 (60.0%)

M stagea 0.668c

 M0 87 (87.9%) 47 (85.5%)

 M1 12 (12.1%) 8 (14.5%)

Clinical stagea 0.909c

 II stage 29 (29.3%) 16 (29.1%)

 III stage 58 (58.6%) 31 (56.4%)

 IV stage 12 (12.1%) 8 (14.5%)

Chemotherapy regi-
men

0.559c

 RT with PF 91 (91.9%) 49 (89.1%)

 RT with other regi-
mens

8 (8.1%) 6 (10.9%)

Dose regimen 0.102c

 2.2 Gy × 30 F 55 (55.6%) 23 (41.8%)

 2.0 Gy × 32 F 44 (44.4%) 32 (58.2%)
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distribution of voxel parameter values in the volume of 
interest, such as the min, max and skewness of the pri-
mary tumour intensity; (2) 20 geometric IBMs that cal-
culated the size and shape of the volume of interest, such 
as sphericity, volume, surface and long axis length; and 
(3) 52 texture IBMs, that described the difference in voxel 
density distribution of the three-dimensional contoured 
structure and consisted of four different matrices: grey 
level co-occurrence (GLCM) [23], grey level run-length 
(GLRLM) [24], neighbourhood grey-tone difference 
(NGTDM) [25], and grey level size-zone (GLSZM) matri-
ces [26]. More details on the algorithms for IBM extrac-
tion and application have been discussed in previous 
studies [14, 27].

Pre‑selection Method and IBM score building
Because high correlations between most of the IBM vari-
ables were expected, in order to reduce the statistical 
probability of multi-collinearity, three rules were imple-
mented to pre-select IBM variables for further analysis. 
First, IBM variables were assessed in the univariable anal-
ysis; variables with a p value less than 0.25 were used for 
the next analysis. Second, from highly correlated pairs of 
IBMs (i.e. the Pearson correlation coefficient r ≥ 0.8) vari-
ables with the higher p value in the Cox univariable anal-
ysis were omitted. Third, we performed the least absolute 
shrinkage and selection operator (LASSO) for the Cox 
regression model to select the most useful prognostic 
IBM variables from the potential predictors.[28]. The 
multiple-IBM-based scores (defined as the IBM scores), 
which were equal to the log-partial hazard of the Cox 
model, were calculated for each patient to reflect the risk 
of mortality or tumour progression and variance inflation 
factor (VIF) used to evaluate the collinearity among these 
final IBMs.

IBM score performance and validation
As patients with OSCC were assigned into two cohorts, 
the performances of the IBM score were evaluated by 
the concordance indices (C-indices), respectively. The 
potential correlation of the IBM score with the OS and 
PFS for both the training and validation cohorts was 
assessed by using Kaplan–Meier survival curve analyses. 
Time-dependent receiver operating characteristic (ROC) 
curves were plotted for both the training and validation 
cohorts in term of OS and PFS. 95% confidence intervals 
were used as the confidence level on the ROC curves in 
this study. The optimal cut-off values of the ROC curves 
were determined using the Youden Indices (YIs) in the 
training cohort and patients were divided into high- and 
low IBM score subgroups; the thresholds of which were 
stratified by the maximum YIs. The same cut-off values 
were then applied to the validation cohort. Multivariable 

Cox proportional hazards analysis was used to assess the 
IBM score as an independent predictor by integrating 
clinical risk factors. In the training cohort, nomograms 
based on the IBM score were developed to assess indi-
vidual patient-level probability estimates for the median 
survival time and 1-year, 3-year, and 5-year OS or PFS 
rates according to each patient’s unique combination of 
baseline characteristics. To estimate the clinical utility of 
the IBM nomograms, decision curve analysis (DCA) was 
used to quantify the net benefits at different threshold 
probabilities in both cohorts.

Follow‑up
The survival estimates mainly assessed in this study were 
OS and PFS. OS was defined as the time from the begin-
ning of radiation therapy to death due to any cause or the 
last day of clinical follow-up, while PFS was defined as 
the time from the beginning of radiation therapy to first 
relapse at any site or death from any cause, whichever 
occurred first, or the last day of clinical follow-up.

Statistical analysis
The clinical features of the patients in the two cohorts 
were compared using the independent t-test or chi-
squared test, with a statistical significance level of 0.05 for 
2-tailed test. All statistical analyses were performed using 
R version 3.6.0 (The R Foundation for Statistical Comput-
ing, Vienna, Austria) and SPSS version 23.0 (IBM Corp, 
Armonk, NY, USA). The LASSO algorithm was imple-
mented using the glmnet package in the R environment 
[29]. The ROC and Kaplan–Meier curves were plotted 
using the pROC and survminer packages, respectively, in 
the R environment. Nomograms were constructed using 
the rms and survival packages in the R environment. The 
DCA curves were created using the rmda package in the 
R environment.

Results
Baseline clinical results
The clinical factors for the training and validation cohorts 
are listed in Table 1. Age was tested by independent t-test, 
and other clinical factors were tested by chi-squared test. 
No significant differences in patients’ clinical character-
istics were found between the two cohorts. Of the 154 
patients included in the study, 119 (77.3%) were men, and 
the median (interquartile range, IQR) age of all patients 
was 60 years (55–64.25 years). In the training cohort, the 
median (IQR) survival time for OS and PFS were 43 (19–
59) and 36 (10–55) months, respectively. In the validation 
cohort, the median (IQR) survival time for OS and PFS 
were 37 (22–55) and 36 (12–54) months, respectively.
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IBM selection results
In the univariable analysis, 46 IBM variables were used 
and 18 IBMs remained after comparing the inter-varia-
ble correlations (Additional file 1: Table S1).11 potential 
predictors with non-zero coefficients were selected in 
the LASSO Cox regression model. We plotted the partial 
likelihood deviance versus log (λ), where λ is the tuning 
parameter (Fig.  2). A dotted vertical line was drawn at 
log (λ) = –2.643, which corresponded to the best value 
λ = 0.071. The optimal tuning parameter resulted in 11 
non-zero coefficients. With their corresponding coeffi-
cients in the LASSO-Cox model, the calculation formulas 
of IBM score for OS (Formula 1) was constructed as:

The constant value was 2.5, which was used to obtain 
IBM scores > 0 from the calculation formula. The VIFs of 
the 11 IBMs were acceptable, ranging from 1.150–3.403, 
indicating no collinearity problems (Additional file  1: 
Table S2).

The same analysis was used to select the IBMs which 
were associated with PFS in the training cohort. 32 IBM 
variables were preselected in the univariable analysis and 
12 IBMs remained after comparing the inter-variable 
correlations (Additional file 1: Table S1). A dotted vertical 
line was drawn at log (λ) = − 2.702, which corresponded 

(1)

IBM score = 0.019× Range− 3.231×Q975− 0.260× Sphericity

+ 0.093×Major_axis_length+ 0.035×Maximum_Probability_GLCM

− 0.304 × Sum_of_Square_Variance_GLCM− 0.014 × Coarseness_NGTDM

− 0.020× Contrast_NGTDM+ 0.020× Busyness_NGTDM+ 0.670

× Small_Zone_Emphasis_GLSZM− 0.064 × Zone_percentage_GLSZM+ 2.5.

to the best value λ = 0.067 (Additional file 2: Figure S1a 
and Figure S1b). The optimal tuning parameter resulted 
in 8 non-zero coefficients. With their corresponding 
coefficients in the LASSO Cox model, the calculation for-
mulas of IBM score for PFS (Formula 2) was constructed 
as:

The VIFs of the 8 IBMs were acceptable, ranging from 
1.266 to 4.524, indicating no collinearity problems (Addi-
tional file 1: Table S2).

Performance of IBM score
In the training cohort, we evaluated the predictive 
accuracy of the IBM score using ROCs analysis at dif-
ferent time points of follow-up. As shown in Fig.  3a, 
b, the area under the curves (AUCs) of the IBM score 
were 0.856 (95% CI 0.756–0.955, p < 0.001) and 0.779 
(95% CI 0.663–0.895, p < 0.001) in terms of 5-year OS 

(2)

IBM score = −0.663×Q75− 0.234 ×Q975− 0.246

× Volume_Density− 0.01× Sphericity+ 0.122

×Major_axis_length− 0.021× Contrast_NGTDM

+ 0.468× Small_Zone_Emphasis_GLSZM− 0.069

× Zone_percentage_GLSZM− 1.4.

Fig. 2  IBM selection using the LASSO-Cox regression model. a Ten-fold cross-validation was performed to select IBMs using LASSO method. At the 
optimal values of the tuning parameter (λ), the partial likelihood deviance curve was plotted versus log (λ). The dotted vertical line was set with 
minimum criteria, a λ value of 0.071127 with log (λ) of − 2.643291, where 11 IBMs were selected. b The coefficient profiles of 18 IBMs in the LASSO. 
The coefficient profile plot was generated against the log (λ) sequence. With ten-fold cross-validation, the dotted vertical line showed the non-zero 
coefficients selected, where eleven IBMs were selected. LASSO, least absolute shrinkage and selection operator; IBMs, imaging biomarkers
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and 5-year PFS, respectively; and the optimal cut-off 
values of YI were 1.012 and 0.688, respectively.Accord-
ing to the maximum YI, the optimal cut-off values gen-
erated by ROC curves were 1.012 for 5-year OS and 
0.688 for 5-year PFS. Patients were then stratified into 

high-risk or low-risk subgroups. In the training cohort, 
the 5-year OS and 5-year PFS were 85.0% and 74.1% 
respectively for the low-risk subgroup and 35.9% and 
35.2% respectively for the high-risk subgroup (hazard 
ratios [HRs]:6.003 (95% CI 2.646–13.618) and 3.416 

Fig. 3  Time-dependent ROC curves for the performance of IBM scores in the training cohort and validation cohort. a Time-dependent OS ROC 
for training cohort; b Time-dependent PFS ROC for training cohort; c Time-dependent OS ROC for validation cohort; d Time-dependent PFS ROC 
for validation cohort. AUCs for 1, 3, 5 years were used for survival prediction. ROC, receiver operation characteristic; AUC, area under the curve; CI, 
confidence interval; OS, overall survival; PFS, progression-free survival; IBM, image biomarker
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(95% CI 1.698–6.873), respectively; all p < 0.001, log-
rank test; Fig.  4a, b). We then tested the same analy-
ses using the ROC and Kaplan–Meier analysis, and 
similar results were observed in the validation cohort. 
As shown in Fig.  3c, d, the AUCs of the IBM score 
were 0.867 (95% CI 0.726–1.000, p = 0.001) and 0.852 
(95% CI 0.713–0.990, p = 0.002) for the 5-year OS and 
5-year PFS, respectively. Patients were then stratified 
into high-risk or low-risk subgroups. In the validation 
cohort the 5-year OS and 5-year PFS were 67.9% and 
66.0% respectively for the low-risk subgroup; and 30.8% 

and 35.9% respectively for the high-risk subgroup (HR 
2.957 (95% CI 1.104–7.919) and 3.051 (95% CI 1.324–
7.034), respectively; all p < 0.05; Fig.  4c, d). Patients 
with OSCC with lower IBM scores were more likely to 
obtain a survival benefit from definitive CCRT.Those 
with high IBM scores had significantly poorer OS and 
PFS according to univariable Cox regression analysis 
(Additional file 1: Table S3). Multivariable Cox regres-
sion analysis for clinical factors and IBM score also 
revealed that the IBM score remained a powerful and 

Fig. 4  Kaplan–Meier survival analysis of overall survival and progression-free survival according to the optimum cut-offs of IBM scores. a Kaplan–
Meier survival analysis of OS for the training cohort; b Kaplan–Meier survival analysis of PFS for the training cohort; c Kaplan–Meier survival analysis 
of OS for the validation cohort; d Kaplan–Meier survival analysis of PFS for validation cohort. We calculated the p value using the log-rank test. HR, 
hazard ratio; CI, confidence interval; IBM, imaging biomarker; OS, overall survival; PFS, progression-free survival
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independent predictive factor for OS and PFS in both 
training and validation cohorts (Table 2).

Clinical benefit of IBM score
Clinical stage was associated with OS and PFS when 
using the Cox univariable analysis; however, it was not 
identified as a predictive independent factor for OS or 
PFS using multivariable analysis in the training cohort. 
IBM nomograms using only IBM scores for OS and PFS 
were constructed (Fig.  5a, b). In the training cohort, 
the C-indices of the models were 0.734 (95% CI 0.664–
0.804) and 0.658 (95% CI 0.587–0.729) for OS and PFS, 
respectively. Similar results were observed in the vali-
dation cohort; the C-indices were 0.672 (95% CI 0.578–
0.766) and 0.666 (95% CI 0.574–0.758) for OS and PFS, 

respectively. The C-index values showed that the IBM 
nomograms had good prognostic performance in both 
training and validation cohorts.

The decision curve analysis showed that IBM score had 
higher overall net benefits than clinical stage, within a 
major range of reasonable threshold probability (Fig. 6). 
Compared to clinical stage, the IBM score demonstrated 
better discrimination capability in both training and vali-
dation cohorts.

Discussion
This study showed that IBMs from contrast-enhanced 
CT images might allow prediction of OS and PFS for 
OSCC patients. The IBM score was revealed to be an 
independent prognostic factor for OSCC patients. 

Table 2  Multivariable association of  IBM score, clinical factors with  OS and  PFS in  the  training and  validation cohort 
(likelihood Ratio: Backward stepwise)

IBM, imaging biomarker; CI, confidence interval; HR, hazard ratio
*  According to American Joint Committee on Cancer (AJCC) staging system 6th

Variables Training cohort Validation cohort

HR (95% CI) p HR (95% CI) p

Overall survival

 IBM score 8.636 (3.572–20.876) < 0.001 4.479 (1.707–11.750) 0.068

 T stage* 0. 749 (0.423–1.325) 0.321 2.747 (1.403–5.376) 0.045

 M stage* 1.072 (0.259–4.448) 0.923 1.522 (0.120–19.340) 0.746

 Clinical stage* 1.345 (0.782–2.314) 0.284 0.679(0.283–1.632) 0.387

Progression-free survival

 IBM score 11.471 (3.123–42.134) < 0.001 6.341 (1.667–24.115) 0.007

 Age 0.991 (0.332–1.035) 0.681 0.962 (0.902–1.026) 0.238

 Sex (female vs. male) 0.602 (0.283–1.280) 0.188 0.429 (0.123–1.499) 0.185

 M stage* 1.917 (0.929–3.960) 0.078 0.824 (0.237–2.862) 0.761

 Clinical stage* 1.006 (0.496–2.041) 0.986 1.484 (0.505–4.363) 0.473

Fig. 5  IBM nomograms for OS (a) and PFS (b). The constructed IBM nomograms were used to estimate OS and PFS for individual OSCC patients. 
IBM, imaging biomarker; OS, overall survival; PFS, progression-free survival; GLCM, grey level co-occurrence matrices; NGTDM, neighbourhood 
grey-tone difference matrices; GLSZM, grey level size-zone matrices
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Patients were successfully stratified into low-risk and 
high-risk subgroups by the IBM score, with signifi-
cant differences in OS and PFS. IBM nomograms dem-
onstrated better discrimination capability compared 
to traditional clinical stage, indicating the clinical 
value of the IBM score for individualised OS and PFS 
estimation.

The new IBM scores demonstrated significant asso-
ciations with the OS and PFS of patients with OSCC. 
For geometric IBMs, sphericity, volume-density and 
the major axis length quantified the sphericity and size 
of tumours. Previous studies revealed that these IBMs 
basically represented tumour volume, which were sig-
nificantly associated with treatment outcomes [30, 31]. 

Fig. 6  Decision curve analysis of PFS and OS were compared between the IBM score and clinical stage in the training and validation cohort, 
respectively. a DCA of OS for the training cohort; b DCA of PFS for the training cohort; c DCA of OS for the validation cohort; d DCA of PFS for 
the validation cohort. The y-axis represents the net benefit. The x-axis represents the threshold probability. Across the full range of threshold 
probabilities, the horizontal black line indicated that no patient chose to undergo follow-up, and the green line indicated that all patients 
underwent follow-up. The red line represented IBM score. The blue line represented clinical stage. Compared to the clinical stage, the IBM score had 
the higher net benefit. DCA, decision curve analysis; IBM, imaging biomarker; OS, overall survival; PFS, progression-free survival
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In our study, the discrimination performances of the 
IBM nomograms were decreased when volume-related 
IBMs were omitted from the IBM score (C-index for the 
radiomics nomogram: OS, 0.672 (95% CI, 0.588–0.757); 
PFS, 0.629 (95% CI, 0.545–0.713) in the training cohort). 
These volume-related IBMs can promote the objective 
evaluation of subtle changes within tumours and pro-
vide clues to lesion invasiveness and growth-patterns [30, 
32]. Range and Q975 were obtained from the histogram 
of voxel intensities and represented the heterogeneity of 
voxel intensities within the ROI [27].

The higher value texture IBMs, including maximum 
probability and sum of square variance, indicated the 
greater distribution variability of grey-level intensity 
values in the image [33, 34]. Coarseness, contrast, and 
busyness were all textural IBMs derived from NGTDM. 
Coarseness was used to quantify the granularity of the 
VOI of the tumour. Our study showed that higher value 
of busyness, lower values of coarseness or of contrast, 
might all be associated with poorer OS. The predictive 
and prognostic value of these pre-treatment IBMs had 
been previously demonstrated in several types of can-
cer [35–37]. Tixier et  al. reported that coarseness from 
NGTDM was a strong predictor of treatment response 
for patients with OC following definitive CCRT [35]. 
However, IBMs derived from NGTDM were influenced 
by the reconstruction settings; therefore multicentre tri-
als are still needed to standardise these IBMs [38]. Small 
zone emphasis measures the distribution of small size 
zones and small dependencies, while zone percentage 
assesses the distribution of large zones of the same inten-
sity, and not of small groups of pixels or segments in any 
given direction [26, 35]. These texture IBMs containing 
spatial information among voxels could strongly reflect 
intra-tumour heterogeneity which was highly relevant 
to poor prognosis [12]. In order to correlate the multiple 
IBMs with the pathophysiological basis of tumours in an 
intuitive method, we constructed the multi-feature IBM 
score, which provided novel oncological biomarkers for 
obtaining phenotypic information, potentially assisting 
clinicians in formulating management strategies.

Current guidelines recommend definitive CCRT as a 
standard component for locally advanced OSCC thera-
pies. However, several studies suggested that certain 
subgroups of patient failed to benefit from the present 
definitive CCRT strategies [6, 9]. Therefore, accurately 
distinguishing the risk subgroups of OSCC patients will 
help improve the current prognostic system and guide 
towards more personalised treatment. A few studies have 
focused on the correlations between radiomics analy-
sis and treatment outcomes evaluation. Zhai et  al. [30]. 
found that heterogeneous IBMs on CT images were sig-
nificantly correlated with OS and helped improve the 

performance of clinical factors for OS among head and 
neck cancer patients. Mule et  al. [39] investigated con-
trast-enhanced CT outcomes that might help predict 
survival in patients with advanced hepatocellular car-
cinoma treated with sorafenib. In the present study, our 
findings indicated that patients with OSCC with higher 
IBM scores had a greater likelihood of worse survival 
rates and failure to respond to CCRT. High-risk patients 
with OSCC identified in the present studies may benefit 
from more effective approaches to improve survival out-
comes [40, 41]. Thus, the IBM score may serve as a prog-
nostic tool for OSCC patients after definitive CCRT.

TNM staging is the most useful tool to stratify OSCC 
patients into different stages according to their tumour 
burden. However, its role in survival prediction among 
OSCC patients with the same clinical stage was non-
significant. To develop an individualised easy-to-use tool 
for clinicians, we attempted to construct nomograms 
based on the IBM score to predict the prognosis of indi-
vidual patients. These IBM nomograms could be used 
to predict the median survival time, and the probability 
of 1-year, 3-year and 5-year OS and PFS for individual 
OSCC patients. The nomograms performed well, with 
significant C-indices, and demonstrated good discrimi-
nation and clinical utility in both the training and valida-
tion cohorts. The decision curve analysis indicated that 
the IBM score was superior to the clinical stage, within a 
major range of reasonable threshold probability. Notably, 
time-dependent ROC curves showed that the IBM score 
did not have a good predictive performance for survival 
within 1 year. It was unclear why discrepancies remained 
for the training and validation cohorts. One possible 
explanation was the small sample size, retrospective 
nature of our study, and model-fitting differences. Fur-
ther analysis for OSCC patients is needed to establish 
this.

For OC patients, contrast-enhanced CT scan is the 
main imaging procedure performed in conventional clini-
cal practice [42]. It has been reported that IBMs extracted 
from contrast-enhanced CT images might be correlated 
with the spatial variability in microvessel density [43]. 
However, in standard CT images, IBMs might be asso-
ciated with variability in tissue densities due to spatially 
variable fibrosis, cell density, and necrosis [13]. Badic at 
el. suggested that IBMs extracted from standard CT and 
contrast-enhanced CT images could provide complemen-
tary prognostic information from both approaches [44]. 
In view of the wide availability of contrast-enhanced CT 
scans among patients undergoing definitive radiother-
apy, our study provides an important basis for conduct-
ing large-scale and multicentre research. It is important 
to note that quality assurance of contrast-enhanced CT 
scans will have a critical impact on radiomics based on 
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these images. Furthermore, verification is needed on 
whether IBMs extracted from contrast-enhanced CT 
images could provide prognostic information for patients 
with oesophageal adenocarcinoma.

The limitations of our retrospective design include 
several aspects that were insufficient for the model [45]. 
This was a retrospective, single-centre study, involving 
a relatively small sample size. This could be addressed 
more thoroughly in future by using a larger sample size 
with multicentre validation cohorts to acquire high-level 
evidence for survival outcomes. Compared to the IBM 
score, the clinical factors used in this study demonstrated 
poor discrimination ability in predicting OS and PFS; 
other potential prognostic biomarkers could be incorpo-
rated into our IBM nomograms. A combination of mul-
tiple biomarkers and IBMs may improve the capability 
of predicting OS and PFS among patients with OSCC 
undergoing definitive CCRT.

Conclusions
We demonstrated that IBMs extracted from contrast-
enhanced CT images could effectively predict survival 
among OSCC patients. The IBM score might serve as a 
non-invasive predictive tool to guide individualised treat-
ment decisions. Further studies with a larger sample size 
and multicentre validation are required.
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